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СОРБЦІЙНІ ХАРАКТЕРИСТИКИ НАНОРОЗМІРНОГО FE3O4  
ЩОДО ІМУНОГЛОБУЛІНУ ЛЮДИНИ IG

Н. В. Кусяк1, К. П. Свиридюк2, О. В. Ходюк3, А. П. Кусяк4, П. П. Горбик5

Проведено дослідження сорбційних характеристик нанорозмірного магнетиту (Fe3O4) щодо іму-
ноглобуліну людини нормального (Ig). Синтезовані зразки Fe3O4 схарактеризовані комплексом 

фізико-хімічних методів: досліджено розмір і морфологію (TEM/SEM-EDX), проведено якісний аналіз 
(ІЧ-Фур’є спектроскопія), рентгенівський дифракційний аналіз (XRD), визначено питому площу 

поверхні (SBET), величину дзета-потенціалу. 
Потенціометрично досліджено кислотно-основні властивості поверхні в модельному фізіологіч-
ному середовищі – 0,9% розчині NaCl (pH 6,86), досліджено процеси сорбції та встановлено сорб-
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ційну активність поверхні наночастинок Fe3O4 щодо Ig. Так, значення ζ-потенціалу для частинок 
Fe3O4 свідчить про достатню стабільність дисперсії в діапазоні pH ~ 2–5, і втрату її за pH ~ 7. 
Встановлено, що на поверхні Fe3O4 переважають нейтральні центри, які однаково характери-
зуються як кислотними, так і основними властивостями. Проведено аналіз кінетичних залеж-
ностей (моделі псевдопершого та псевдодругого порядків) та ізотерм сорбції (моделі Ленгмюра 
та Фрейндліха) Ig із використанням лінійного і нелінійного моделювання. Одержані параметри 

вказують на можливість застосування кінетичної моделі псевдопершого порядку для коректного 
опису залежності сорбції від часу та придатності моделі Фрейндліха для ізотерм сорбції Ig на 

поверхні Fe3O4. Максимальна сорбційна ємність (Amax) становить 12 мг·г−1. Показник Фрейндліха 
свідчить про неоднорідність геометрії сорбційних центрів, їхню енергетичну нееквівалентність 
та переважно фізичну природу сорбції. Завдяки високій біосумісності отримані наночастинки 

магнетиту можуть бути потенційно придатними для створення сорбційних матеріалів та ком-
позитів щодо білкових речовин, зокрема імуноглобулінів. 

Ключові слова: магнетит, імуноглобулін, сорбційні моделі, моделювання, кислотно-основні 
властивості.

SORPTION PROPERTIES OF NANOSIZED FE3O4  
TOWARD HUMAN IMMUNOGLOBULIN IG

N. V. Kusiak, K. P. Svyrydiuk, A. P. Kusyak, O. V. Khodiuk, P. P. Gorbyk

The sorption characteristics of nanosized magnetite (Fe3O4) towards human normal immunoglobulin 
(Ig) were studied. The synthesized Fe3O4 samples were characterized by a complex of physicochemical 
methods: size and morphology were investigated (TEM/SEM-EDX), qualitative analysis was performed 

(IR-Fourier spectroscopy), X-ray diffraction analysis (XRD), specific surface area (SBET), and zeta potential 
were determined. The acid-base properties of the surface were potentiometrically investigated in 

a model physiological medium of 0,9% NaCl solution (pH 6,86), the sorption processes were investigated 
and the sorption activity of the surface of Fe3O4 nanoparticles towards normal human immunoglobulin 
(Ig) was established. Thus, the value of the ζ-potential for Fe3O4 particles indicates sufficient dispersion 
stability in the pH range ~ 2–5, and its loss at pH ~ 7. It was found that neutral centers predominate 
on the Fe3O4 surface, which are equally characterized by both acidic and basic properties. The kinetic 

dependences (pseudo-first and pseudo-second order models) and sorption isotherms (Langmuir 
and Freundlich models) of Ig were analyzed using linear and nonlinear modeling. The obtained 

parameters indicate the possibility of using the pseudo-first order kinetic model to correctly describe 
the dependence of sorption on time and the suitability of the Freundlich model for sorption isotherms 
of Ig on the Fe3O4 surface. The maximum sorption capacity (Amax) is 12 mg·g−1. The Freundlich index 

indicates the hetergeneity of the geometry of the adsorption centers, their energy non-equivalence and, 
mainly, the physical nature of the sorption. Due to the high biocompatibility, the obtained magnetite 

nanoparticles may be potentially suitable for creating adsorption materials and composites for protein 
substances, in particular immunoglobulins.

Key words: magnetite, immunoglobulin, sorption models, modeling, acid-base properties.

Вступ
Використання наноматеріалів як суб-

стратів для іммобілізації органічних речо-
вин медико-біологічного призначення в біо-
логічному середовищі потребує детального 
вивчення взаємодії таких матеріалів як із 
препаратами, так і з компонентами біо-
логічного середовища (Peng et al., 2020; 
Vega-Vásquez et al., 2020). Фізико-хімічні 
параметри таких матеріалів мають відпові-
дати принципам біосумісності, сорбційної 
активності, часу перебування в біологіч-
ному середовищі, гідрофільності/гідрофоб-
ності тощо (Shalmani et al., 2019; Auría-
Soro et al., 2019). Важливо розуміти процес 

та механізм взаємодії біологічних речовин 
з поверхнями наночастинок (далі – НЧ) 
різної природи, вплив на конформацію та 
функціональну здатність речовин, зокрема 
білкових (Bayramoglu et al., 2019). Ця взає-
модія буде визначатися хімічною природою 
реагентів, фізико-хімічними (поверхневий 
заряд, реакційні групи, pHIIP) та геометрич-
ними (розмір, структура поверхні) власти-
востями НЧ. 

Серед біологічних реагентів ключове 
місце належить білковим речовинам, тому 
дослідження поведінки НЧ щодо них є важ-
ливими. Досліджено, що швидке та легке 
зв’язування білків із поверхнею НЧ зумов-
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лено електростатичною взаємодією, вод-
невими зв’язками, гідрофобними взає-
модіями й утворенням координаційних 
зв’язків. Ступінь та специфічність взаємодії 
визначаються трьома основними факто-
рами, комбінація яких контролює сорбцію. 
Першим фактором є характеристики НЧ 
(природа, форма та розмір) та її поверхні 
(заряд і гідрофобність). Другим – середо-
вище. Тому зазвичай використовуються 
складні буферні суміші, іони яких, імовірно, 
конкурують з біомолекулами за місця сор-
бції (Blank-Shim et al., 2017). Тому вибір 
середовища є одним із вирішальних фак-
торів у процесі дослідження. Третім факто-
ром, що впливає на взаємодію, є сам білок 
і особливості його структури, оскільки білки 
можуть зазнавати структурних змін через 
взаємодію з НЧ (Abarca-Cabrera et al., 2021). 
З метою збереження функціональності 
молекули важливою є підтримка її нативної 
структури. 

Тому вивчення поведінки поверхні НЧ 
щодо біологічних речовин є принциповим. 
Серед біосумісних композитів магніточут-
ливі на основі Fe3O4 залишаються одними 
із ключових (Martins et al., 2021; Islam et 
al., 2021). Так, у роботах (Cao et al., 2020; 
Kaveh-Baghbaderani et al., 2021) досліджено 
іммобілізацію білкових сполук на компози-
тах Fe3O4. Деякі демонструють іммобілізу-
ючу активність щодо IgG (Jofre et al., 2020; 
Khuyen et al., 2020; Kusyak et al., 2023). 
IgG визначали також за допомогою елек-
тронно-спінової резонансної спектроско-
пії з використанням НЧ Fe3O4 (Tian et al., 
2018).

Основною метою цієї роботи було вивчення 
фізико-хімічних властивостей синтезова-
ного нанорозмірного Fe3O4 та процесів сор-
бційної іммобілізації Immunoglobulinum 
humanum (Ig). Як середовище під час сор-
бційних тестів використовувався 0,9% NaCl 
(ФР) для збереження початкової структури 
білків, який має простий іонний склад, що 
спрощує інтерпретацію отриманих резуль-
татів. Досліджені особливості кінетики сор-
бції, необхідні для розуміння взаємодії білка 
з НЧ Fe3O4.

Матеріал і методи
Монодисперсний нанорозмірний магне-

тит Fe3O4 синтезовано за реакцією Елмора. 
Постійне перемішування та поступове рівно-
мірне додавання розчину солей заліза (Fe(II) 
та Fe(III)) до розчину аміаку, взятому в над-
лишку, зумовлює утворення монодисперс-
ного нанорозмірного магнетиту та сприяє 

максимальному виходу продукту реакції. 
Рентгеноструктурні дослідження прове-
дено методом порошкової рентгенівської 
дифракції (XRD) (DRON-UM1 з Fe-фільтром 
CuKα (λ = 1,54056 Å), у діапазоні 2θ від 20° 
до 80° із кроком 0,05° та експозицією 15 с. 
Запис інфрачервоних спектрів (Tensor 27 
(Bruker Optik GmbH)) проведено в діапазоні 
4 000–400 см−1 (таблетки KBr) з роздільною 
здатністю 2 см−1. Морфологічні характери-
стики і розмір одержаних НЧ досліджено 
методом електронної мікроскопії (JEOL 
1200 EX (Токіо, Японія). Для визначення дзе-
та-потенціалу (Zetasizer Nano ZS (Malvern)) 
зразки суспендували у ФР за концентрації 
зразка 2 г·л −1. 

Проведено дослідження кислотно-ос-
новних характеристик поверхні НЧ 
Fe3O4 методом pH-метрії окремих наважок, 
що дозволяє оцінити інтегральну кислот-
ність поверхні за зміною pH водної суспензії 
досліджуваних зразків (I-160M). Значення 
pH ізоелектричної точки (pHIIP) визначали 
відповідно до методики (Kusyak et al., 2021; 
Кусяк та ін., 2025). За допомогою основних 
рівнянь кислотно-основного балансу експе-
риментально отримані значення [H+]0 та [H+]
екв були використані для розрахунку кон-
центрацій і відносної частки протонованих 
-E-OH2

+ та депротонованих -E-O– активних 
центрів поверхні НЧ, розраховано значення 
їх pK.

Для дослідження сорбції Ig на поверхні 
НЧ було використано препарат імуно-
глобулін (нормальний людський, розчин 
для ін’єкцій 10%, Biopharma). Препарат 
містить від 9 до 11% білка (антитіла різної 
специфічності) і являє собою імунологічно 
активну білкову фракцію із сироватки або 
плазми людини, очищену та концентровану 
з використанням відповідних методів. У цій 
роботі Ig кількісно визначено як загальний. 
Вплив сумісної сорбції кількох видів анти-
тіл не вивчався. Було виготовлено серію 
зразків з різною концентрацією Ig у діа-
пазоні 0,15–1,15 мг мл −1у ФР з pH 6,86. 
Сорбцію Ig проводили протягом 2 годин 
у статичному режимі (Т = 298 К). Кількість 
сорбованого препарату на поверхні магне-
титу визначали шляхом вимірювання кон-
центрації розчинів Ig до та після сорбції. 
Спектрофотометричні дослідження (Helios 
Gamma) сорбції Ig проведено за λ = 280 нм, 
довжина оптичного шляху становить 1 см. 
Сорбційну ємність (A, мг/г) розраховували 
за допомогою класичних рівнянь (Kusyak et 
al., 2022):
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A
C C V

m
o eq�
�� ��� �

�                    (1)

де A (мг г−1) – кількість сорбованої речовини, 
Co та Ceq (мг мл−1) – початкова та рівноважна 
концентрації розчину Ig, V (мл) – об’єм роз-
чину, m (мг) – маса використаного сорбенту.

Аналіз кінетичних характеристик прово-
дили за концентрації Ig 0,6 мг мл −1 у серед-
овищі ФР (pH = 6,86). Одержані експери-
ментальні кінетичні дані проаналізовані 
на відповідність кінетичним моделями 
псевдопершого та псевдодругого поряд-
ків. Кінетичне рівняння моделі псевдопер-
шого порядку Лагенгрена в диференційній 
формі: 

dA
dt

k A At
eq t� � �� �1                                (2)

згідно з яким у даній моделі швидкість 
сорбції пропорційна різниці між рівноваж-
ною сорбцією (Аеq) та сорбцією (Аt) у момент 
часу t. В інтегральній формі:

lg lgA A A k teq t eq�� � � � �1

2 303,
                (3)

де Аeq та Аt – сорбційна ємність у стані рів-
новаги та в момент часу t відповідно (мг/г); 
k1 – константа швидкості сорбції моделі 
псевдопершого порядку (хв-1); t – час (хв). 

Побудова графічної залежності в коорди-
натах ln(Aeq –At) = f(t) дозволяє отримати від-
повідну лінійну функцію та знайти k1 та Aeq.

Кінетичне рівняння моделі псевдодру-
гого порядку Хо та Маккея в диференційній 
формі :

dA
dt

k A At
eq t� � �� �1

2

�
                                  (4)

де k2 – константа швидкості псевдодругого 
порядку (г мг−1 хв −1).

В інтегральній формі:
t
A k A A

t
t eq eq

�
�

� �
1 1

2

2
                  (5)

Побудова графічної залежності в коор-
динатах t/At = f(t) дозволяє отримати від-
повідну лінійну функцію та знайти k2. 
Розраховано початкову швидкість сорбції 
h0. Для даних моделей були розраховані тео-
ретичні значення сорбційної ємності (Aтеор) 
у момент часу t. 

Експериментальні ізотерми проаналізо-
вані на відповідність моделями Ленгмюра 
та Фрейндліха. Для водних розчинів неліній-
ний математичний вираз моделі ізотерми 
Ленгмюра: 

A A
K C
K Ceq max
L eq

L eq

�
�

� �1
                    (6)

де Аeq і Аmax – рівноважна та гранична сорб-
ційна ємність (мг/г або моль/г); 

Ceq – рівноважна концентрація сорбату 
(мг мл −1 або моль мл −1);

KL – константа Ленгмюра, яка пов’язана із 
сорбційною здатністю (л мг −1 або л моль −1). 

Лінійних математичних рівнянь моделі 
ізотерми Ленгмюра відомо багато. У роботі 
для розрахунків використовували два, які 
найчастіше застосовують:

C
A K A A

Ceq

eq L max max
eq�

�
� �

1 1              (7)

та 
1 1 1 1
A K A C Aeq L max eq max

�
�

� �             (8)

Побудова графічних залежностей 
лінійного рівняння (7) у координатах  
Ceq/Aeq = f(Ceq), а рівняння (8) у координатах 
1/Ae = f(1/Ceq) дозволила знайти KL та Amax. 

Модель ізотерми сорбції Фрейндліха 
використовується переважно для діапазону 
середніх концентрацій. Нелійна форма ізо-
терми сорбції має вигляд:

A K Ceq F eq
n� �
1

                                         (9)

де КF – константа Фрейндліха, відносна сор-
бційна здатність сорбенту (мг/г або моль/г); 
n – показник у рівнянні Фрейндліха, який 
характеризує інтенсивність сорбційного 
процесу й розподіл активних центрів на 
адсорбенті.

Побудова графічної залежності рівняння 
лінійної форми 

lnA lnK
n
lnCeq F eq� �

1
                           (10)

у координатах ln Aeq = f (ln Ceq) дозволяє 
отримати відповідне лінійне рівняння та 
знайти KF та n.

Результати та їх обговорення
На дифрактограмах XRD (рис. 1-а) магне-

титу спостерігаються рефлекси (за 2θ = 30,1; 
35,6; 44; 53,3; 57,4; 62,8 з міжплощинними 
відстанями 2,96; 2,52; 2,05; 1,71; 1,60; 1,47), 
що відповідають кристалічній фазі магне-
титу. Смуги ІЧ поглинання (рис. 1-б) у діапа-
зоні 570 см −1 (валентні коливання, пов’язані 
зі зв’язками Fe-O) та 790 см −1, 890 см −1 та 
1 628 см −1 (Fe-OН) відповідають магнетиту.

Дані ТЕМ (рис. 2-а) ілюструють сферичну 
форму НЧ із середнім діаметром 6,76 ± 1,54 
нм (рис. 2-б) без значної агрегації.
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Дисоціація поверхневих ≡Е-ОН груп 
оксидів металів, процеси сорбції іонів Н+ 

і ОН− у результаті гетеролітичної дисоціації 
молекул води або адсорбтиву в суспензіях 
призводять до зміни рН водної суспензії 
і, як наслідок, поверхневого заряду окси-
дів. Аналіз залежності гідролітичної сорбції 
дозволяє з’ясувати кислотно-основну при-
роду поверхневих груп оксиду (Kosmulski, 
2016). Так, різниця у значеннях кислот-
ності розчинів до (pH0) і після (pHeq) гід-
ролітичної сорбції показує зміну ±ρрН: 
±ρрН=рН0−рНeq, а точка перетину прямої 
±ρрН=f(рН0) з віссю рН0 вказує на значення 
ізоелектричної точки рНІЕТ (рН, за якого 
спостерігається рівність сорбції іонів Н+ 

і ОН-). tg кута нахилу свідчить про обмінну 
ємність поверхневих груп (рис. 3-a). На 
основі одержаних експериментальних 
даних (Кусяк та ін., 2025) були визначені 
інтегральні показники кислотно-основних 
властивостей суспензій на основі констант 
іонізації поверхневих гідроксильних груп, 
частки негативно (α-), позитивно (α+) заря-
джених і нейтральних (α0) груп у діапа-

зоні рН (α+ � � �E OH2 , α0 − −E OH ,  α-- − − −E O ).  
Розраховано значення іонної сили та кое-
фіцієнт активності. Побудовано діаграму 
залежності часток поверхневих груп 
поверхні Fe3O4 від рН середовища. Так, 
за результатами аналізу (див. рис. 3-а)  
рНІЕТ = 6,5 – 6,8 форма кривої гідролітичної 
сорбції відповідає наявності на поверхні 
Fe3O4 різних типів кислотно-основних 
активних центрів (рис. 3-б).

Згідно з результатами досліджень, на 
поверхні Fe3O4 переважають нейтральні 
центри, які однаково характеризуються 
як кислотними, так і основними власти-
востями, що дає змогу утворювати центри 
кислотного й основного типів у діапазоні 
рН 4–9 з максимальною часткою після рН 6 
(Кусяк та ін., 2025). У досліджуваному діа-
пазоні pH частка позитивно заряджених 
груп ‑E‑OH2

+ на поверхні Fe3O4 зменшується 
зі збільшенням pH, найбільше значення 
0,84 за pH 4,01, зменшується за pH 4,52. 
Частка негативно заряджених груп -E-O− 

на поверхні фіксується після pH 6,5 у дуже 
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малих кількостях: 1,39·10−6 – 8,84·10−7. 
Частка теоретично розрахованих позитивно 
і негативно заряджених центрів більша, ніж 
експериментально одержаних, оскільки ней-
тральні групи залежно від рН середовища 
беруть участь у процесах протонування або 
депротонування.

Значення ζ-потенціалу для НЧ Fe3O4 пере-
буває в діапазоні 28,7 ± 1,68 – 27,47 ± 2,61 mV  
(Kusyak et al., 2021; Kusyak et al., 2022) 

(рис. 4), свідчить про достатню стабільність 
дисперсії НЧ у діапазоні pH ~ 2-5, яка втра-
чається за pH ~ 7. 

Кінетичні криві, основні параметри та 
статистичні показники залежності сорбції 
Ig у середовищі ФР на зразках Fe3O4 від часу 
наведені на рис. 5 та в таблиці. Значення 
сорбційної ємності з використанням ліній-
ного і нелінійного моделювання псевдопер-
шого та псевдодругого порядків, а також 
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статистичні показники дозволяють більш 
точно встановити характер сорбції препа-
рату на поверхні зразків. 

Високі значення коефіцієнта кореляції, 
задовільні параметри та значення Атеор, 
близькі до експериментально отриманих, 
вказують на можливість застосування кіне-
тичної моделі псевдопершого порядку для 
коректного опису залежності сорбції від 
часу. 

Результати досліджень сорбції Ig у діапа-
зоні концентрацій 0,15–1,15 мг мл−1 вико-
ристано для побудови ізотерм, розрахунку 
параметрів і визначення можливого меха-
нізму сорбції за відповідністю моделям 
Фрейндліха та Ленгмюра (рис. 6). 

Згідно з розрахованими з різних лінійних 
форм, відповідно до рівнянь 7 та 8, даними 
розбіжність між значеннями KL та Amax, ізо-
терм Ленгмюра (відповідно криві 3 та 4) 
може свідчити про нелінійність природи 
рівнянь, можливий вплив крайніх точок 
і неповне насичення або непридатність 

моделі Ленгмюра для даного діапазону кон-
центрацій. Повна узгодженість одна з одною 
теоретичних ізотерм Фрейндліха (криві 5, 6) 
та параметрів KF і n може свідчити про при-
датність даної моделі для коректного опису 
ізотерм сорбції Ig на поверхні НЧ Fe3O4. 
Теоретичне значення Amax приблизно 12 мг г−1.  
Показник n, розрахований з рівняння 
Фрейндліха, становить 1,658, відповідно, 
коефіцієнт неоднорідності 1/n поверхні 
адсорбенту відповідає умові 0 < 1 / n < 1, що 
свідчить про неоднорідність геометрії сор-
бційних центрів, їхню енергетичну неекві-
валентність та переважно фізичну природу 
сорбції. 

Висновки
Комплексом фізико-хімічних методів 

проаналізовано морфологічні та фізи-
ко-хімічні характеристики синтезованих 
зразків наночастинок Fe3O4. Досліджено 
сорбційну активність поверхні наночас-
тинок Fe3O4 щодо імуноглобуліну людини 
нормального. Проведено аналіз кінетич-

Таблиця 
Кінетичні параметри моделей псевдопершого та псевдодругого порядків  

сорбції Ig на поверхні МН Fe3O4

Кінетичні моделі
порядків Параметри Статистичні показники

RSS χ² R2

Псевдопершого Aeq, (мг·г-1) K1, (хв-1)
Нелінійне 17,8866 0,00659 1,32836 1,71343 0,97063
Лінійнe 11,78003 0,03915 0,60135 0,68494 0,93035
Псевдодругого Aeq, (мг·г-1) K2, (г·мг−1·хв-1) hO, (мг·г−1 хв-1)
Нелінійне 32,91534 1,08964E-4 0,11805 1,35828 1,71469 0,96997
Лінійне 14,73494 7,14387E-4 0,15511 71,89169 10,0351 0,2514
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Рис. 6. Експериментальна (1) та теоретично розраховані (2-6) ізотерми сорбції Ig на 
поверхні МН Fe3O4 (C0 = 0,15–1,15 мг/мл, T = 298 K), одержані з використанням констант 

Ленгмюра (2–4) та Фрейндліха (5,6) (2, 5 – нелінійне моделювання, 3, 4, 6 – лінійне 
моделювання) 
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них залежностей (моделі псевдопершого 
та псевдодругого порядків) та ізотерм сор-
бції (моделі Ленгмюра та Фрейндліха) Ig 
з використанням лінійного та нелінійного 
моделювання. Одержані параметри вка-
зують на можливість застосування кіне-
тичної моделі псевдопершого порядку для 
коректного опису залежності сорбції від 

часу та придатності моделі Фрейндліха 
для ізотерм сорбції Ig на поверхні Fe3O4. 
Максимальна сорбційна ємність (Amax) ста-
новить 12 мг·г−1. Показник Фрейндліха n 
(1,658) свідчить про неоднорідність геоме-
трії сорбційних центрів, їхню енергетичну 
нееквівалентність та переважно фізичну 
природу сорбції. 
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