ОСОБЛИВОСТІ МОРФОЛОГІЇ ПЕЧІНКИ СТРОКАТОГО ТОВСТОЛОБИКА (HYPOPHTHALMICHTHYS NOBILIS)
DOI:
https://doi.org/10.32782/naturaljournal.12.2025.2Ключові слова:
хребетні тварини, порівняльна анатомія, мікроскопічна будова, дослідження органів, кісткові риби, гепатоцити, органелиАнотація
Для визначення еколого-токсикологічної ситуації та оцінки впливу різних несприятливих факторів водного середовища на водні організми слід здійснювати морфологічний аналіз окремих органів, які насамперед піддаються негативному впливу.У статті подані результати досліджень щодо гістологічних та ультрамікроскопічних особливостей будови печінки кісткової риби родини коропових: строкатого товстолобика – Hypophthalmichthys nobilis (Eschmeyer, 2003). Проведено аналіз мікроструктури печінкової тканини з використанням світлової мікроскопії та ультрамікроскопічних методів, що дало змогу виявити ключові морфологічні та функціональні особливості органа.Встановлено, що в процесі філогенетичного розвитку риб, які розвиваються у водному середовищі, відбувається певна структурна перебудова печінки: адаптації до різноманітних умов існування супроводжувалися зміною ряду параметрів морфологічної будови печінки. У строкатого товстолобика (рослиноїдні) печінка трилопатева. Для товстолобика характерною ознакою печінки є наявність гепатопанкреаса (печінка та підшлункова залози, асоційовані в єдиний орган).Особливістю мікроскопічної будови печінки родини коропових є слаборозвинена міжчасточкова сполучна тканина, а паренхіма часточки печінки має трубчасту будову у вигляді багатогранних, ламаних товстостінних трубочок, стінками яких є гепатоцити. Ці трубочки представлені синусоїдними капілярами, які забезпечують ефективний обмін речовин між кров’ю та клітинами печінки, сприяючи детоксикації організму й обробці поживних речовин. У таких трубочках також спостерігаються великі запаси глікогену, що свідчить про високий рівень метаболічної активності та здатність печінки коропових риб до накопичення енергетичних ресурсів.Досліджено стан гепатоцитів, судинної системи печінки та структурні зміни, що виникають під впливом різних екологічних і фізіологічних факторів. Встановлено основні адаптивні механізми тканини печінки, які забезпечують її функціональну активність у строкатого товстолобика.Проведені результати розширюють і доповнюють відомості про макро- та мікроскопічну будову печінки щодо видових особливостей коропових риб у відповідних розділах анатомії, гістології, порівняльної анатомії, зоології тощо.
Посилання
Главатчук В.А. Вплив пробіотичних препаратів на інтенсивність росту та гематологічні показники коропа. Bulletin of Sumy National Agrarian University. The series: Livestock. 2024. № 2. С. 46–55. https://doi.org/10.32782/bsnau.lvst.2024.2.7.
Горальський Л.П., Хомич В.Т., Кононський О.І. Основи гістологічної техніки і морфофункціональні методи дослідження у нормі та при патології : навчальний посібник. Житомир : Полісся, 2019. 288 с.
Дюдяєва О.А., Рутта О.В. Додаткові вимоги до продукції аквакультури на зовнішніх ринках, у тому числі в торговельних мережах ЄС. Водні біоресурси та аквакультура. 2021. № 2. C. 64–76. https://doi.org/10.32851/wba.2021.2.6.
Корженевська П.О., Шарамок Т.С., Мушит С.О. Сезонна динаміка морфо-фізіологічних показників молоді коропа лускатого (Cyprinus carpio Linnaeus, 1758) Таромського рибного господарства. Рибогосподарська наука України. 2019. № 3. С. 5–15.
Махиборода К.В. Функціонування ринку органічної продукції аквакультури в Україні та світі в контексті інноваційної економіки. Проблеми інноваційно-інвестиційного розвитку. 2019. № 20. С. 102–113.
Машкова К.А., Шарамок Т.С. Особливості гістологічної структури печінки карася сріблястого річки Самара (Дніпропетровська область). Український журнал природничих наук. 2023. № 4. С. 31–39.
Олійник О.Б. Зміни у печінці та селезінці коропів, уражених збудниками крустацеозів, під дією препаратів «Жавель-клейд» та «Діамант». Ветеринарна медицина. 2017. № 103. С. 370–372.
Присяжнюк Н.М., Онищенко Л.С. Особливості морфології печінки окремих видів трирічок родини коропових. Науково-технічний бюлетень НДЦ біобезпеки та екологічного контролю ресурсів АПК. 2016. Т. 4. № 1. C. 198–201.
Рудь Ю.П. Молекулярна діагностика вірусних захворювань риб. Науково-технічний бюлетень Державного науково-дослідного контрольного інституту ветеринарних препаратів та кормових добавок і Інституту біології тварин. 2021. № 2 (22). С. 323–330. https://doi.org/10.36359/scivp.2021-22-2.38.
Abhijith B.D., Ramesh M., Poopal R.K. Responses of metabolic and antioxidant enzymatic activities in gill, liver and plasma of Catla catla during methyl parathion exposure. The Journal of Basic & Applied Zoology. 2016. Vol. 77. P. 31–40. https://doi.org/10.1016/j.jobaz.2015.11.002.
Abusrer S., Shtewi H. Morphological and histological structure of hepatopancreas in rock goby Gobius paganellus in the western coast of Libya. Open Veterinary Journal. 2023. Vol. 13. № 10. P. 1251. https://doi.org/10.5455/ovj.2023.v13.i10.3.
Al-Ghanim K.A. Effect of a synthetic pyrethyroid, cypermethrin, on aminotransferases and glu- tamate dehydrogenase activities in gill, liver and muscles of a freshwater fish, Cyprinus carpio. Pakistan Journal of Zoology. 2014. Vol. 46. № 4. P. 997–1001.
Ali A., Wei S., Ali A., Khan I., Sun Q., Xia Q., Wang Z., Han Z., Liu Y., Liu S. Research Progress on Nutritional Value, Preservation and Processing of Fish–A Review. Foods. 2022. Vol. 11. № 22. P. 3669. https://doi.org/10.3390/foods11223669.
Atta K.I. Morphological, anatomical and histological studies on the olfactory organs and eyes of teleost fish: Anguilla anguilla in relation to its feeding habits. The Journal of Basic & Applied Zoology. 2013. Vol. 66. № 3. P. 101–108. https://doi.org/10.1016/j.jobaz.2013.10.002.
Balakrishna Naik K. Biochemical alterations as total proteins (tp) aspartate amino transferase (AAT) and alanine aminotransferase (ALAT) induced by permethrin and 25% ec in the fish cyprinus carpio (L.). International Journal of Advanced Research. 2024. Vol. 12. № 09. P. 1454–1463. https://doi.org/10.21474/ijar01/19582.
Božidar S., Marko B., Zoran Z., Vesna D. Histological methods in the assessment of different feed effects on liver and intestine of fish. Journal of Agricultural Sciences Belgrade. 2011. Vol. 11. 56 (1). P. 87–100. https://doi.org/10.2298/JAS1101087R.
Campos V.E.W., Pereira B.F., Pitol D.L., da Silva Alves R.M., Caetano F.H. Analysis of the liver of fish species prochilodus lineatus altered environments, analyzed with imagej. Microscopy Research. 2017. Vol. 5 (1). P. 1–9. https://doi.org/10.4236/mr.2017.51001.
Carvalho M., Montero D., Torrecillas S., Castro P., Zamorano M.J., Izquierdo M. Hepatic bio- chemical, morphological and molecular effects of feeding microalgae and poultry oils to gilthead sea bream (Sparus aurata). Aquaculture. 2021. Vol. 532. P. 736073. https://doi.org/10.1016/ j.aquaculture.2020.736073.
Chanet B., Schnell N.K., Guintard C., Chen W.J. Anatomy of the endocrine pancreas in acti- nopterygian fishes and its phylogenetic implications. Scientific Reports. 2023. Vol. 13. № 1. https://doi.org/10.1038/s41598-023-49404-7.
Cui X., Huang X., Chen X., Li H., Wu Y., Yang Z., Liu Z., Feng R., Xu J., Wei C., Ding Z., Cheng H. Influence of Starvation on Biochemical, Physiological, Morphological, and Transcriptional Responses Associated with Glucose and Lipid Metabolism in the Liver of Javelin Goby (Synechogobius hasta). Animals. 2024. Vol. 14. № 18. P. 2734. https://doi.org/10.3390/ani14182734.
Dias D., Dardengo G.M., Engrola S., Navarro-Guillén C. Characterization and comparison of the digestive physiology of two scombrids, Katsuwonus pelamis and Sarda sarda, in the Gulf of Cádiz. PLOS ONE. 2021. Vol. 16. № 4. P. e0249541. https://doi.org/10.1371/journal.pone.0249541.
Georgieva E. Histological and biochemical changes in liver of common carp (Cyprinus carpio L.) under metal exposure. North-Western Journal of Zoology. 2016. Vol. 12. № 2. P. 261–70.
Glencross B. A SWOT Analysis of the Use of Marine, Grain, Terrestrial-Animal and Novel Protein Ingredients in Aquaculture Feeds. Reviews in Fisheries Science & Aquaculture. 2024. P. 1–39. https://doi.org/10.1080/23308249.2024.2315049.
Honcharova O. The influence of environmental factors on fish productivity in small reservoirs and transformed waters. Ukrainian Journal of Ecology. 2021. Vol. 11. № 1. P. 176–180.
Horalskyi L. P., Demus N. V., Sokulskyi I. M., Gutyj B. V., Kolesnik N. L., Pavliuchenko O. V., Horalska I. Y. Species specifics of morphology of the liver of the fishes of the Cyprinidae family. Regulatory Mechanisms in Biosystems. 2023. Vol. 14. № 2. P. 234–241. https://doi.org/10.15421/022335.
Hu J.H. Explore the relationship between fish community and environmental factors by machine learning techniques. Environmental Research. 2020. Vol. 184. P. 109262. https://doi.org/10.1016/ j.envres.2020.109262.
Irm M., Taj S., Jin M., Luo J., Andriamialinirina H.J.T., Zhou Q. Effects of Replacement of Fish Meal by Poultry By-Product Meal on Growth Performance and Gene Expression Involved in Protein Metabolism for Juvenile Black Sea Bream (Acanthoparus schlegelii). Aquaculture. 2020. Vol. 528. P. 735544. https://doi.org/10.1016/j.aquaculture.2020.735544.
Jannathulla R., Rajaram V., Kalanjiam R., Ambasankar K., Muralidhar M., Dayal J.S. Fishmeal availability in the scenarios of climate change: inevitability of fishmeal replacement in aquafeeds and approaches for the utilization of plant protein sources. Aquaculture. 2019. Vol. 50. P. 3493–3506. https://doi.org/10.1111/are.14324.
Kim H.T., Yun S.W., Park J.Y. Anatomy, ultrastructure and histology of the olfactory organ of the largemouth bass Micropterus salmoides, Centrarchidae. Applied Microscopy. 2019. Vol. 49. № 1. https://doi.org/10.1186/s42649-019-0023-3.
Kukhtyn M., Malimon Z., Salata V., Rogalskyy I., Gutyj B., Kladnytska L., Kravcheniuk K., Horiuk Y. The effects of antimicrobial residues on microbiological content and the antibiotic resistance in frozen fish. World’s Veterinary Journal. 2022. Vol. 12. № 4. P. 374–381. https://doi.org/10.54203/scil.2022.wvj47.
Laktuka K., Kalnbalkite A., Sniega L., Logins K., Lauka D. Towards the Sustainable Intensification of Aquaculture: Exploring Possible Ways Forward. Sustainability. 2023. Vol. 15. № 24. P. 16952. https://doi.org/10.3390/su152416952.
Matras M., Stachnik M., Borzym E., Maj-Paluch J., Reichert M. Potential vector spe- cies of carp edema virus (CEV). Journal of Fish Diseases. 2019. Vol. 42. № 7. P. 959–964. https://doi.org/10.1111/jfd.13000.
Maulu S. Utilizing Clostridium autoethanogenum for dietary protein in aquafeeds: Current progress in research and future perspectives. Journal of Applied Aquaculture. 2024. Vol. 37. № 1. P. 67–85. https://doi.org/10.1080/10454438.2024.2338900.
Mokhtar D.M. Cellular and stromal elements organization in the liver of grass carp, Ctenopharyngodon idella (Cypriniformes: Cyprinidae). Micron. 2018. Vol. 112. P. 1–14. https://doi.org/10.1016/j.micron.2018.06.006.
Payuta A.A., Flerova E.A. Dynamics of indices of metabolism in muscle tissue, liver and gonads of Abramis brama in different periods of the annual cycle. Biosystems Diversity. 2020. Vol. 28. № 2. P. 146–153. https://doi.org/10.15421/012020.
Payuta A.A., Flerova E.A. Impact of habitation conditions on metabolism in the muscles, liver, and gonads of different sex and age groups of bream. Regulatory Mechanisms in Biosystems. 2021. Vol. 12. № 2. P. 240–250. https://doi.org/10.15421/022133.
Pulido-Rodriguez L.F., Bruni L., Secci G., Moutinho S., Peres H., Petochi T., Marino G., Tibaldi E., Parisi G., Growth H., & Enzymatic A. Quality of European seabass fed on hermetia illucens and poultry by-product meal in a commercial farm. Animals. 2024. Vol. 14 (10). P. 1449. https://doi.org/10.3390/ani14101449.
Rejane M., Vildes M. Ultra-structural and histochemical analysis of channel catfish (Ictalurus punctatus) liver treated with fumonisin B1. Brazilian Archives of Biology and Technology. 2008. Vol. 51. № 2. P. 333–344. https://doi.org/10.1590/S1516-89132008000200013.
Rekha R., Surya P.N., Suyash G. Biochemical composition of the liver and muscles of cyprinid fish. February. 2021. № 1. P. 108–111. https://doi.org/10.37663/0131-6184-2021-1-108-111.
Sokulskyi I.M., Horalskyi L.P., Kolesnik N.L., Dunaievska O.F., Radzihovskyi M.L. Histostructure of the gray matter of the spinal cord in cattle (Bos Taurus). Ukrainian Journal of Veterinary and Agricultural Sciences. 2021. Vol. 4. № 3. P. 11–15. https://doi.org/10.32718/ujvas4-3.02.
Sun S. Serum biochemistry, liver histology and transcriptome profiling of bighead carp Aristichthys nobilis following different dietary protein levels. Fish & Shellfish Immunology. 2019. Vol. 86. P. 832–839. https://doi.org/10.1016/j.fsi.2018.12.028.
Szarek J. Pathomorphological Changes in the Liver of Carp (Cyprinus carpio L.) are Dependent on Fish Production Technology. Journal of Comparative Pathology. 2010. Vol. 143. № 4. P. 345. https://doi.org/10.1016/j.jcpa.2010.09.154.
Taddesse F. Histological changes of liver in overfed young nile tilapia. Journal of Fisheries and Aquatic Science. 2014. Vol. 9 (2). P. 63–74. https://doi.org/10.3923/jfas.2014.63.74.
Vicentini C.A., Franceschini-Vicentini I.B., Bombonato M.T.S., Bertolucci B., Lima S.G., Santos A.S. Morphological Study of the Liver in the Teleost Oreochromis niloticus. International Journal of Morphology. 2005. Vol. 23. № 3. https://doi.org/10.4067/s0717-95022005000300003.
Vodianitskyi O. Effect of reserviour temperature and oxygen conditions on the activity of Na-K pump in embrios and larvae of perch, roach, and ruffe. Ukrainian Journal of Ecology. 2020. Vol. 10. № 2. P. 184–189.
Wilson J.M., Castro L.F.C. Morphological diversity of the gastrointestinal tract in fishes. Fish Physiology. 2010. Vol. 30. P. 1–55. https://doi.org/10.1016/S1546-5098(10)03001-3.
Zahaby S., Hassan S., Elsheikh E. Ultramicroscopic organization of the exterior olfactory organ in Anguilla vulgaris in relation to its spawning migration. Open Veterinary Journal. 2024. Vol. 14 (1). 512 р. https://doi.org/10.5455/ovj.2024.v14.i1.46.
Zhu L., Zhang Z., Chen H., Lamer J. T., Wang J., Wei W., Fu L., Tang M., Wang C., Lu G. Gut microbiomes of bigheaded carps and hybrids provide insights into invasion: A hologenome perspec- tive. Evolutionary Applications. 2020. https://doi.org/10.1111/eva.13152.