PHYTOPLANKTON OF RECREATIONAL PONDS OF ZHYTOMYR DISTRICT

Authors

DOI:

https://doi.org/10.32782/naturaljournal.8.2024.9

Keywords:

phytoplankton, ponds, water quality, biomass, Shannon index, primary production, destruction

Abstract

The structural and functional characteristics of the phytoplankton of recreational ponds of Stanyshivskyi and Pryazhivskyi (Zhytomyr district, Zhytomyr region) are presented, their bioproduction potential is clarified, and water quality is assessed. It is shown that the phytoplankton of ponds has a rich species composition. In the seasonal distribution of algae, the maximum number of specific and intraspecific taxa is observed in the autumn period. In all seasons, the Chlorophyta, Bacillariophyta and Euglenozoa divisions play a leading role in the formation of the species and intraspecies richness of water bodies, and in the Stanyshiv pond – also Cyanoprocaryota in the summer. According to the biomass of phytoplankton, the water quality of the reservoirs corresponds to the III class of water quality of the «slightly polluted» category. In the phytoplankton of ponds, the leading role belonged to planktonic-benthic forms; to cosmopolitan species by geographical location; alkaliphiles and indifferents in relation to pH; to oligohalobs-indifferent in terms of halobity; stationary and flowing forms. According to the level of organic pollution according to the Pantle-Buk system in Sladechek’s modification, the water quality corresponds to the II class of water quality. Watanabe’s assessment of organic water pollution showed a predominance of Eurysprobes in the ponds. The average values of the Shannon index, calculated for the phytoplankton of the Pryazhivskyi and Stanyshivskyi ponds, indicate the predominance of the oligodominant structure of algal communities. The high intensity of photosynthesis in ponds is typical for reservoirs and watercourses of the Ukrainian Polissia zone. The ratio of the integral indicators of the primary production of phytoplankton and the destruction of organic matter indicates the predominance of the autotrophic phase in the ponds. A comparison of the structural and functional characteristics of phytoplankton in recreational ponds with natural (rivers and lakes) and anthropogenically altered water bodies (reservoirs) proved the common common mechanisms of formation and functioning of their autotrophic link. A distinctive feature is the lower values of the informative diversity of phytoplankton compared to other types of water bodies, as indicated by the values of HB. We believe that this is due to the specifics of artificially created reservoirs.

References

Романенко В.Д. Методи гідроекологічних досліджень поверхневих вод. Київ : ЛОГОС, 2006. С. 8–24.

Щербак В.І., Майстрова Н.В., Морозова А.О., Семенюк Н.Є. Національний природний парк «Прип’ять–Стохід». Різноманіття альгофлори і гідрохімічна характеристика акваландшафтів. Київ : Фітосоціоцентр, 2011. 164 с.

Chen X.J., Li X., Li J.J. Indicator Species of Phytoplankton Pollution and Water Quality Evaluation in Wuliangsuhai. Ecol. Sci. 2021. № 40 (3). Р. 231–237. https://doi.org/10.14108/j.cnki.1008-8873.2021.03.027.

Deacon C., Samways M.J., Pryke J.S. Artificial reservoirs complement natural ponds to improve pondscape resilience in conservation corridors in a biodiversity hotspot. Plos One. 2018. № 20. Р. 13–19. https://doi.org/10.1371/journal.pone.0204148.

Dubrovsky Yu.V. Features of Quasi-Natural Ecosystems and Their Role in the Conservation of Biodiversity. Ecology and Evolutionary Biology. 2018. Vol. 3. № 4. P. 27–32.

Guiry M.D., Guiry G.M. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway, 2020. [Electronic resource] URL: http://www.algaebase.org (access date 30.03.2024).

Ignatiades L. Taxonomic Diversity, Size-Functional Diversity, and Species Dominance Interrelations in Phytoplankton Communities: a Critical Analysis of Data Interpretation. Mar. Biodivers. 2020. № 50 (4). Р. 1–9. https://doi.org/10.1007/s12526-020-01086-4.

Pantle R., Buck H. Die biologische Überwachung der Gewässer und die Darstellung der Ergebnisse. Gas- und Wasserbach. 1955. Vol. 96. № 18. 604 р.

Reynolds C.S. Phytoplankton Assemblages and Their Periodicity in Stratifying lake Systems. Ecography. 1980. № 3. Р. 141. https://doi.org/10.1111/j.1600-0587.1980.tb00721.

Reynolds C.S. Phytoplankton Periodicity: the Interactions of Form, Function and Environmental Variability. Freshw. Biol. 1984. № 14 (2). Р. 111–142. https://doi.org/10.1111/j.1365-2427.1984.tb00027.x.

Salmaso N., Padisák J. Morpho-Functional Groups and Phytoplankton Development in Two Deep Lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia. 2007. № 578 (1). Р. 97–112. https://doi.org/10.1007/s10750-006-0437-0.

Shcherbak V.I. Primary production of algae in the Dnieper and Dnieper Reservoirs. Hydrobiol. J. 1999. Vol. 35. № 1. P. 1–13. https://doi.org/10.1615/HydrobJ.v35.i1.10.

Shelyuk Y.S., Astahova L.Y. Phytoplankton succession in the anthropogenic and climate ecological transformation of freshwater ecosystems. Biosystems Diversity. 2021. № 29 (2). P. 119–128. https://doi.org/10.15421/012116.

Shelyuk Yu.S. Peculiarities of the Processes of Production and Decomposition in Artificial Aquatic Ecosystems. Hydrobiological Journal. 2022. № 58 (2). P. 19–33. https://doi.org/10.1615/HydrobJ.v58.i5.30.

Shelyuk Yu.S. Solar energy utilization efficiency in the processes of phytoplankton photosynthesis in various aquatic ecosystems of the Polissya. Hydrobiological Journal. 2021. № 57 (4). P. 3–12. https://doi.org/10.1615/HydrobJ.v57.i4.10.

Shelyuk Yu.S., Scherbak V.I. Phytoplankton structural and functional indices in the rivers of the Pripyat’ and Teterev basins. Hydrobiological Journal. 2018. № 54 (3). P. 10–23.

Sladeček V. Diatoms as indicators of organic pollution. Acta Hydrochim. Hydrobiol. 1986. Vol. № 14 (5). P. 555–566. https://doi.org/10.1615/HydrobJ.v54.i3.10.

Tsarenko P.M., Wasser S.P., Nevo E. Algae of Ukraine: diversity, nomenclature, taxonomy, ecology and geography. Cyanoprocaryota, Euglenophyta, Chrysophyta, Xanthophyta, Raphidophyta, Phaeophyta, Dinophyta, Cryptophyta, Glaucocystophyta, and Rhodophyta. Eds. Ruggell : Ganter Verlag, 2006. Vol. 1. 713 p.

Tsarenko P.M., Wasser S.P., Nevo E. Algae of Ukraine: diversity, nomenclature, taxonomy, ecology and geography. Bacillariophyta. Eds. Ruggell : Ganter Verlag, 2009. Vol. 2. 413 p.

Tsarenko P.M., Wasser S.P., Nevo E. Algаe of Ukraine: diversity, nomenclature, taxonomy, ecology and geography. Chlorophyta. Eds. Ruggell : Ganter Verlag, 2011. Vol. 3. 511 p.

Published

2024-07-24