KINETICS OF GROWTH OF LYZENGANG RING IN ELASTIC GELATIN GELS

Authors

DOI:

https://doi.org/10.32782/naturaljournal.8.2024.14

Keywords:

gels, chemical reactions in gels, Lisengang rings, precipitation reactions, surface chemistry, physical and colloidal chemistry, food chemistry

Abstract

Gels are widely used in the food, pharmaceutical and cosmetic industries. Gels are also some household (liquid soap, detergent, gel balls for washing, gel nail polishes) and food (jelly, fruit jelly) substances that people use all the time. Examples of gels can be solidified solutions of gelatin, agar, pectin, silicic acid; celluloid, glue, textile fibers, etc. Gels are especially widely represented in plant and animal organisms, for example, muscle, nerve and connective tissue, the vitreous body of the eye, various types of biological membranes are examples of complex gels. Studying the physics and chemical properties of gels, the possibility of reactions in gels is an urgent task. The work investigates the kinetics of Lysengang ring growth in elastic gelatin gels. It is shown that one of the conditions for the formation of clear Lisengang rings in the gel is that the first electrolyte solution, which is mixed with the gelatin solution, should be of low concentration (up to 1%), and the second should be as high as possible (up to 90%). It was found that during the first day, 14 Lisengang rings were formed in the Ag2Cr2O7 gel, the distance between the rings was 0.1 cm, and the total diameter was 6-7 cm. During the following days, no changes were observed, except that the gel dried and became solid. Such a dry gel did not undergo any changes even for several months. It was shown that two rings of Cu(OH)2 were formed within 3-12 hours, however, unlike Ag2Cr2O7 rings, they were not clearly defined. During the day, the total diameter of the spot on the gel doubled, but the number of rings did not change. The only noticeable change that occurred after 5 days was that this dry gel in the Petri dish cracked and became brittle. This is possibly due to the formation of potassium salts with the hydrolyzate of gelatin protein molecules. It was determined that BaSO4 rings grew over the entire diameter of the Petri dish (12 cm) within eight hours, but a clear boundary between the rings could not be recorded. No changes were observed in this gel within 1 day. In 2-3 days, the gel began to dry, as the solvent began to evaporate. The process of formation of cracks was not observed. It is shown that the largest ring is formed from Ag2Cr2O7, and the least from BaSO4. This dependence can be explained by the different solubility of the formed salts in gels and their ability to influence the stability of the gel network in the gel volume.

References

Баранова І.І. Особливості опрацювання гелів на основі бодяги. Збірник наукових праць співробітників НМАПО ім. П.Л. Шупика. 2010. № 19 (3). С. 584–588.

Гелі косметичні. Загальні технічні умови : СОУ 24.5-37-103:2004. Київ : Мінагрополітики України, 2004. 6 с.

Гелі, їх виникнення, будова і властивості. [Електронний ресурс]. URL: https://studfile.net/preview/6272689/page:11/ (дата звернення 10.04.2024).

Камінський О.М., Кусяк Н.В., Петрановська А.Л., Абрамов М.В., Туранська С.П., Горбик П.П., Чехун В.Ф. Адсорбція комплексів цисдихлордіамінплатини наноструктурами на основі мягнетиту. Металофізика та новітні технології. 2013. Т. 35. № 3. С. 389–406.

Терещук Є.І., Панасюк Д.Ю., Камінський О.М. Вивчення кінетичної стійкості синтетичних нееластичних гелів на прикладі гелю силікатної кислоти. Актуальні задачі хімії: дослідження та перспективи : ІV Всеукр. наук. конф., 15 квіт. Житомир, 2020. С. 158–159. [Електронний ресурс]. URL: http://surl.li/ufdvy (дата звернення 05.03.2024).

Усков І.О., Єременко Б.В., Пелишенко С.С., Нижчик В.В. Колоїдна хімія з основами фізичної хімії високомолекулярних сполук : підручник. Київ : Вища шк., 1995. 142 с.

Чуян Т.В., Горобей К.М., Камінський О.М., Чумак В.В., Денисюк Р.О., Панасюк Д.Ю. Фізико-хімічні особливості взаємодії в гелях. Перспективи хімії в сучасному світі : зб. матеріалів ІІІ Всеукр. Інтернет-конф. молодих вчених, 22 листоп. 2023 р. Житомир : Вид-во ЖДУ ім. І. Франка, 2023. C. 85–86. [Електронний ресурс]. URL: http://eprints.zu.edu.ua/id/eprint/38332(дата звернення 05.03.2024).

Abramov M.V., Kusyak A.P., Kaminskiy O.M., Turanska S.P., Petranovska A.L., Kusyak N.V., Gorbyk P.P. Chapter 1. Magnetosensitive Nanocomposites Based on Cisplatin and Doxorubicin for Application in Oncology. In: Horizons in World Physics / Editor: Albert Reimer.: Nova Science Publishers, Inc. 2017. Vol. 293. P. 1–56.

Abdolali A., Guo W.S., Ngo H.H., Chen S.S., Nguyen N.C., Tung K.L. Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: A critical review. Bioresource Technology. 2014. V. 160. P. 57–66. https://doi.org/10.1016/j.biortech.2013.12.037.

Belala Z., Jeguirim M., Belhachemi M., Addoun F., Trouvé G. Biosorption of basic dye from aqueous solutions by Date Stones and Palm-Trees Waste: Kinetic, equilibrium and thermodynamic studies. Desalination. 2011. V. 271. № 1–3. P. 80–87. https://doi.org/10.1016/j.desal.2010.12.009.

Gao X., Guo C., Hao J., Zhao Z. et al. Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives. International J. of Biological Macromolecules. 2020. V. 164. P. 4423–4434. https://doi.org/10.1016/j.ijbiomac.2020.09.046

Grigoraș C.-G., Simion A.-I., Favier L., Drob C., Gavrilă L. Performance of dye removal from single and binary component systems by adsorption on composite hydrogel beads derived from fruits wastes entrapped in natural polymeric matrix. Gels. 2022. V. 8 (12). 795 р. https://doi.org/10.3390/gels8120795.

Kamacı U.D., Kamacı M. Hydrogel beads based on sodium alginate and quince seed nanoparticles for the adsorption of methylene blue. Inorganic Chemistry Communications. 2024. V. 160. 111919 р. https://doi.org/10.1016/j.inoche.2023.111919.

Nakano Y., Takeshita K., Tsutsumi T. Adsorption mechanism of hexavalent chromium by redox within condensed-tannin gel. Water Research. 2001. V. 35. № 2. P. 496–500. https://doi.org/10.1016/S0043-1354(00)00279-7.

Petranovska A.L., Abramov N.V., Turanska S.P., Gorbyk P.P., Kaminskiy A.N., Kusyak N.V. Adsorption of cis‑dichlorodiammineplatinum by nanostructures based on single-domain magnetite J. Nanostruct. Chem. 2015. V. 5. № 3. Р. 275–285. https://doi.org/10.1007/s40097-015-0159-9.

Published

2024-07-24