EFFECT OF TEMPERATURE ON THE DISSOCIATION COEFFICIENT OF ACETIC ACID

Authors

DOI:

https://doi.org/10.32782/naturaljournal.8.2024.16

Keywords:

acetic acid, temperature, pH metry, dissociation constant, titration, concentration

Abstract

This article is devoted to metrological study of acetic acid dissociation process at a temperature change in the range from 20 °C to 75 °C. The study considers methodology methods and presents their classification. The main experiments methodology is identified. The selected methods reflect the rapid determination of acidity using a portable pH meter. The concentration of working acid solution is 6 mol/l, from which a solution with a concentration of 1 mol/l is prepared. Nodal temperature points (four points in temperature range 20 °C – 75 °C) are chosen for measurements; 5 test samples of acetic acid are formed (С(HAc) = 1 mol/l); the analysis of measurements results at nodal points are carried out for the results accuracy on five experimental samples of acetic acid according to first and second order statistical moments; the characteristics of experimental data accuracy are evaluated. Acetic acid samples are brought to nodal points with a positive temperature gradient using a steam bath. The measurement error estimate is determined by the device accuracy class and is 0.32. The dissociation constant is determined from the obtained pH values. These determinations are carried out under condition of ensuring chemical equilibrium. The nature of dissociation constant temperature dependency is clearly non-linear.

References

Защепкіна Н. М., Шульга О. В., Наконечний О. А. Метрологічне забезпечення інформаційно-вимірювальних систем : навч. посіб. Київ : Вид-во КПІ ім. Ігоря Сікорського, 2021. 176 с.

Іщенко М.В. Забезпечення і контроль якості аналізу : навч. посіб. Київ, 2023. 73 с.

Ластов’як Я.В. Караман Н.С., Полутаренко М.С., Паздерський Ю.А. Оцтова кислота. Властивості, використання, виробництво : монографія. Львів : Вид-во НУ «Львів Політехніка», 2004. 166 c.

Пономарьова В.В. Основи хімії: навчальний посібник. Київ : ВПЦ «Київський університет», 2022. 160 с.

Сухан В.В., Трохименко О.М., Трохименко А.Ю. Аналітичні реагенти й техніка приготування їхніх розчинів: підручник. Київ : ВПЦ «Київський університет», 2022. 592 с.

Тичков В.В., Гальченко В.Я., Трембовецька Р.В. Метрологічне забезпечення фізико-хімічних вимірювань: навч.-метод. посіб. Черкаси, 2021. 253 с.

Amador C., Wencheng F. Liu, Mina C. Johnson-Glenberg, Likamwa R. Work-in-Progress – Titration Experiment: Virtual Reality Chemistry Lab with Haptic Burette. Proceedings of 6th International Conference of the Immersive Learning Research Network. 2020. P. 363–365.

Catherine E., Housecroft, Alan G. Sharpe. Inorganic Chemistry (5-th ed.). Pearson Education Limited. 2018. 1296 p.

García-García S., Wold S., Jonsso M. Efects of temperature on the stability of colloidal montmorillonite particles at diferent pH and ionic strength. Appl. Clai Sci. 2009. Vol. 43 (1). P. 21–26. https://doi.org/10.1016/j.clay.2008.07.011.

Ghosh D., Chakraborty K., Bharti B., Pulimi M., Anand S., Chandrasekaran N., Kumar Rai P., Swapna Singha Rabha C., Mukherjee A. The effects of pH, ionic strength, and natural organics on the transport properties of carbon nanotubes in saturated porous medium. Colloids Surf. A: Physicochem. Eng. Asp. 2022. Vol. 647. P. 129025. https://doi.org/10.1016/j.colsurfa.2022.129025.

Jankovic M., Sinadinovic-Fisher S., Lamshoeft M. Liquid-Liquid Equilibrium Constant for Acetic Acid in an Epoxidized Soybean Oil-Acetic Acid-Water System. Journal of JAOCS. 2010. Vol. 87 (5). P. 591–600. https://doi.org/10.1007/s11746-009-1531-z.

Kumar A., Galal M. Zaiad. Spectrophotometric determination of dissociation quotients of triazene – N 1 – oxides and the effect of substituents on pKa values. Sci. Res. J. 2013.Vol. I (IV). P. 56–59.

Mygushchenko R., Kropachek O., Suchkov H., Korzhov I., Asieieva I., Mygushchenko K. Algorithmic support of the automatic identification device for industrial units nodes, 2023 IEEE 4th KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine. 2023. P. 186–193. https://doi.org/10.1109/KhPIWeek61412.2023.

Wang Y., Yang K., Chefetz B., Xing B., Lin, D. Te pH and concentration dependent interfacial interaction and heteroaggregation between nanoparticulate zero-valent iron and clay mineral particles. Environ. Sci. Nano. 2019. Vol.7. P. 2129–2140. https://doi.org/10.1039/C9EN00433E.

Xiong Y., Liu X., Xiong H. Aggregation modeling of the influence of pH on the aggregation of variably charged nanoparticles. Sci. Rep. 2 021. Vol. 11. P. 17386. https://doi.org/10.1038/s41598-021-96798-3.

Published

2024-07-24