ALGORITHM FOR ESTIMATING THE BASIC SET OF TAXA FOR DETERMINING THEIR EFFECTIVENESS
DOI:
https://doi.org/10.32782/naturaljournal.8.2024.26Keywords:
pollution, water object, test object, parameter, biotesting technique, efficiencyAbstract
The aquatic environment is often polluted with complex mixtures of chemicals that can pose a threat to ecosystems and human health. Due to our limited knowledge of the chemical world and exposure to a multitude of uncontrolled or completely unknown chemicals, comparisons between observed effects and predicted toxicity based on chemical analysis often indicate significant fractions of unexplained effects. Because comprehensive analysis and assessment of the entire chemical universe appears impossible, approaches are needed to reduce the complexity of potential or actual environmental contamination while limiting the likelihood of missing significant risk factors and consequences. This pollution cannot be tackled by targeted analysis alone, such tools are needed to reduce this complexity and identify hazardous chemical exposures that may cause adverse effects. It is often problematic to relate biological effects to exposure to specific active substances due to the large number of compounds present in the environment. Bioassays are probably the solution to determine the synergistic effect of all chemicals present in the water and establish the toxic properties of the aquatic environment and therefore the well-being of the aquatic ecosystem. In the laboratory of ecological and toxicological research of Kharkiv National University named after V. N. Karazin, a series of experimental studies was conducted to determine the levels of acute lethal toxicity of waste water samples, which were selected from the releases of enterprises of various industries within the Dnipropetrovsk region, and the levels of chronic toxicity of surface water samples from control units of the same enterprises. The experiments used a “base set of taxa”, namely algae, macrophytes, crustaceans and fish. A possible disadvantage of determining the ecological status of a water body using biotesting can be its unrealistic representation using only one biotest, since the biological response of an organism to the same toxic agent is different. Therefore, to study the toxicity of surface and wastewater, according to the results of this study, it is recommended to use several biological tests with organisms representing different trophic levels.
References
ДСТУ 4173-2003. Якість води. Визначання гострої летальної токсичності на Daphnia magna Straus та Ceriodaphnia affinis Lilljeborg (Cladocera, Crustacea) (ISO 6341:1996, MOD). 17 с.
Крайнюков О.М. Критерії оцінки чутливості організмів та ефективності методик біотестування для визначення токсичних властивостей води. Вісник ХНУ. Сер.: Екологія. 2013. № 1012. С. 64–69.
Крайнюкова А.М., Крайнюков О.М., Кривицька І. А. Використання методик біотестування для оцінювання екологічного стану поверхневих вод. Вісник Харківського національного університету імені В. Н. Каразіна серія «Екологія». 2021. 24. С. 103–116. https://doi.org/10.26565/1992-4259-2021-24-09.
Allan Ian J., Vrana B., Greenwood R., Mills G. A., Roig B., Gonzalez C. A “toolbox” for biological and chemical monitoring requirements for the European Union’s Water Framework Directive. Talanta, 2006. Vol. 69. Issue 2. Р. 302–322. https://doi.org/10.1016/j.talanta.2005.09.043.
Aslantürk А., Sultan Ö. In vitro cytotoxicity and cell viability assays: principles, advantages, and disadvantages. Genotoxicity-A predictable risk to our actual world. 2018. 2. Р. 64–80. https://doi.org/10.5772/intechopen.71923.
Hernández F., Sancho J.V., Ibáñez M., Grimalt S. Investigation of pesticide metabolites in food and water by LC-TOF-MS. TrAC Trends in Analytical Chemistry. 2008. Vol. 27. Issue 10. Р. 862–872. https://doi.org/10.1016/j.trac.2008.08.011.
Hollert H., Dürr M., Holtey-Weber, R. Endocrine Disruption of Water and Sediment Extracts in a Non-Radioactive Dot Blot/RNAse Protection-Assay Using Isolated Hepatocytes of Rainbow Trout. Deficiencies between bioanalytical effectiveness and chemically determined concentrations and how to explain them. Env Sci Poll Res Int. 2005. 12. Р. 347–360. https://doi.org/10.1065/espr2005.07.273.
Houtman C.J., Booj P., Van der Valk C.M., Van Bodegom P.M., Van den Ende F., Gerritsen A.A.M., Lamoree M.H., Legler J., Brouwer A. Biomonitoring of estrogenic exposure and identification of responsible compounds in bream from Dutch surface waters. Environ. Toxicol. Chem. 2007. 26. P. 898–907. https://doi.org/ 10.1897/06-326R.1.
Kadian N., Raju K., Rashid M., Malik M., Taneja I., Wahajuddin M. Comparative assessment of bioanalytical method validation guidelines for pharmaceutical industry. Journal of Pharmaceutical and Biomedical Analysis, 2016. Vol. 126. P. 83–97. https://doi.org/10.1016/j.jpba.2016.03.052.
Lomartire S., Marques J.C., Gonçalves A.M.M. Biomarkers based tools to assess environmental and chemical stressors in aquatic systems. Ecol. Indic. 2021 122. P. 107207. https://doi.org/10.1016/j.ecolind.2020.107207.
Martinez-Haro M., Acevedo P., Juliana Pais-Costa A., Neto J. M., Vieira L. R., Ospina-Alvarez N., Taggart M. A., Guilhermino L., Ribeiro R. Ecotoxicological tools in support of the aims of the European Water Framework Directive: A step towards a more holistic ecosystem-based approach. Ecological Indicators. 2022. Vol. 145. P. 109645. https://doi.org/10.1016/j.ecolind.2022.109645.
Sabotič J., Bayram E., Ezra D., Gaudêncio S. P., Haznedaroğlu B. Z., Janež N., A guide to the use of bioassays in exploration of natural resources. Biotechnology Advances, 2024. Vol. 71. P. 108307. https://doi.org/10.1016/j.biotechadv.2024.108307.
Schuijt L.M., Peng F.-J., Van den Berg S.J.P., Dingemans M.M.L., Van den Brink P.J. (Eco)toxicological tests for assessing impacts of chemical stress to aquatic ecosystems: Facts, challenges, and future. Sci. Total Environ. 2021. 795. P. 148776 https://doi.org/10.1016/j.scitotenv.2021.148776.
Streck G. Chemical and biological analysis of estrogenic, progestagenic and androgenic steroids in the environment. TrAC Trends in Analytical Chemistry. 2009. Vol. 28. Issue 6. P. 635–652. https://doi.org/10.1016/j.trac.2009.03.006.
Suter M.JF. Effect-oriented environmental analysis. Anal Bioanal Chem. 2008. 390. P. 1957–1958. https://doi.org/10.1007/s00216-008-1982-3.