APPLICATION OF QUANTUM-CHEMICAL METHODS TO ESTIMATE THE CARCINOGENIC PROPERTIES OF BENZOPYRENE METABOLITES
DOI:
https://doi.org/10.32782/naturaljournal.10.2024.4Keywords:
quantum-chemical calculations, metabolites, carcinogenic activity, molecular orbital populationAbstract
Benzo[a]pyrene is a common environmental pollutant and a powerful carcinogen that can accumulate in various organs and tissues, causing DNA damage through the adducts’ formation, which contributes to the development of neoplasms of various localization. This compound carcinogenic activity is well studied and proven to be related to the nature and electronic configuration of biologically activated metabolites. Since not all metabolites of benzo[a]pyrene show carcinogenic effects, in this study an attempt to theoretically investigate their spectral properties and to use the obtained data in establishing a correlation with the observed carcinogenic effect was made. In order to study the spectroscopic properties of benzo[a]pyrene metabolites which, depending on the transformation pathways, can form products with different carcinogenic activity, the energies of the lower electronically excited states of metabolite molecules were calculated using the semi-empirical PM3 method (Hyper Chem 7.5). To determine the features of the electron density distribution during the molecules’ excitation, we used the values of the occupancy of the highest occupied molecular orbital and the lowest unoccupied molecular orbital, which participate in one-electron transitions. The calculation results of the position of the benzo[a]pyrene absorption spectra satisfactorily correlate with the experimental data presented in the literature, which is a confirmation of the obtained data reliability regarding the spectral characteristics of its metabolites. The performed calculations made it possible to determine the position of the long-wavelength absorption bands of some metabolites, for which experimental data have not been currently determined. It has been established that the longwave bands in the absorption spectra of carcinogenic metabolites of benzo[a]pyrene in the number: BP → BP 7,8-epoxide → BP 7,8-dihydrodiol → BP 7,8-dihydrodiol-9,10-epoxide are equally intense and sequentially shifted to the short-wavelength region relative to the benzo[a]pyrene absorption spectra.
References
Bukowska B., Mokra K., Michałowicz J. Benzo[a]pyrene-Environmental Occurrence, Human Exposure, and Mechanisms of Toxicity. International Journal of Molecular Sciences. 2022. Vol. 23. № 11. P. 6348. https://doi.org/10.3390/ijms23116348.
Christensen A.S., Kubař T., Cui Q., Elstner M. Semiempirical Quantum Mechanical Methods for Noncovalent Interactions for Chemical and Biochemical Applications. Chemical Reviews. 2016. Vol. 116. № 9. P. 5301–5337. https://doi.org/10.1021/acs.chemrev.5b00584.
Ewa B., Danuta M.Š. Polycyclic aromatic hydrocarbons and PAH-related DNA adducts. Journal of Applied Genetics. 2017. Vol. 58. № 3. P. 321–330. https://doi.org/10.1007/s13353-016-0380-3.
Fan Z., et al. Rapid fluorescence immunoassay of benzo[a]pyrene in mainstream cigarette smoke based on a dual-functional antibody-DNA conjugate. RSC Advances. 2018. Vol. 8. № 52. P. 29562–29569. https://doi.org/10.1039/c8ra04915g.
Fischer J.M.F., et al. PARP1 protects from benzo[a]pyrene diol epoxide-induced replication stress and mutagenicity. Archives of Toxicology. 2018. Vol. 92. № 3. P. 1323–1340. https://doi.org/10.1007/s00204-017-2115-6.
Garcia A.L.C, et al. Metabolic Activation of Benzo[a]pyrene by Human Tissue Organoid Cultures. International Journal of Molecular Sciences. 2023. Vol. 24. № 1. P. 606. https://doi.org/10.3390/ijms24010606.
Hecht S.S., Hochalter J.B. Quantitation of enantiomers of r-7,t-8,9,c-10-tetrahydroxy-7,8,9,10-tetrahydrobenzo[a]-pyrene in human urine: evidence supporting metabolic activation of benzo[a]pyrene via the bay region diol epoxide. Mutagenesis. 2014. Vol. 29. № 5. P. 351–356. https://doi.org/10.1093/mutage/geu024.
Han Y., et al. Excited State Kinetics of Benzo[a]pyrene Is Affected by Oxygen and DNA. Molecules. 2023. Vol. 28. № 13. P. 5269. https://doi.org/10.3390/molecules28135269.
Jiang H., et al. Metabolism of benzo[a]pyrene in human bronchoalveolar H358 cells using liquid chromatography-mass spectrometry. Chemical Research in Toxicology. 2007. Vol. 20. № 9. P. 1331–1341. https://doi.org/10.1021/tx700107z.
Kim M., Jee S.-C., Sung J.-S. Hepatoprotective Effects of Flavonoids against Benzo[a]Pyrene-Induced Oxidative Liver Damage along Its Metabolic Pathways. Antioxidants. 2024. Vol. 13. № 2. P. 180. https://doi.org/10.3390/antiox13020180.
Louro H., et al. The Use of Human Biomonitoring to Assess Occupational Exposure to PAHs in Europe: A Comprehensive Review. Toxics. 2022. Vol. 10. № 8. P. 480. https://doi.org/10.3390/toxics10080480.
Madeen E., et al. Toxicokinetics of benzo[a]pyrene in humans: Extensive metabolism as determined by UPLC-accelerator mass spectrometry following oral micro-dosing. Toxicology and Applied Pharmacology. 2019. Vol. 364. P. 97–105. https://doi.org/10.1016/j.taap.2018.12.010.
Mokrzyński K., Szewczyk G., Sarna T. Benzo[a]Pyrene and Benzo[e]Pyrene: Photoreactivity and Phototoxicity toward Human Keratinocytes. Photochemistry and Photobiology. 2023. Vol. 99. № 3. P. 983–992. https://doi.org/10.1111/php.13721.
Rubin H. Synergistic mechanisms in carcinogenesis by polycyclic aromatic hydrocarbons and by tobacco smoke: a bio-historical perspective with updates. Carcinogenesis. 2021. Vol. 22. № 12. P. 1903–1930. https://doi.org/10.1093/carcin/22.12.1903.
Styszko K., Pamuła J., Pac A., Sochacka-Tatara E. Biomarkers for polycyclic aromatic hydrocarbons in human excreta: recent advances in analytical techniques-a review. Environmental Geochemistry and Health. 2023. Vol. 45. № 10. P. 7099–7113. https://doi.org/10.1007/s10653-023-01699-1.
Sakhno T.V., Korotkova I.V., Pustovit S.V., Borisenko A.Yu. Effect of temperature on the Fluorescence of O- and N-containing Heterocycles: XXth European Colloquium on Heterocyclic Chemistry, Stockholm, Sweden, 2002, August 18–21. P. 61.
Silveira A.L., Barbeira P.J.S. Synchronous fluorescence spectroscopy and multivariate classification for the discrimination of cachaças and rums. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2022. Vol. 270. P. 120821. https://doi.org/10.1016/j.saa.2021.120821.
Thiel W. Semiempirical quantum-chemical methods. WIREs Computational Molecular Science. 2014. Vol. 4. № 2. P. 145–157. https://doi.org/10.1002/wcms.1161.
Yemele O.M., et al. A systematic review of polycyclic aromatic hydrocarbon pollution: A combined bibliometric and mechanistic analysis of research trend toward an environmentally friendly solution. Science of The Total Environment. 2024. Vol. 926. P. 171577. https://doi.org/10.1016/j.scitotenv.2024.171577.
Young D. Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems. New York: Wiley-Interscience, 2001. 382 p.
Zhang X., Fales A., Vo-Dinh T. Time-Resolved Synchronous Fluorescence for Biomedical Diagnosis. Sensors. 2015. Vol. 15. № 9. P. 21746–21759. https://doi.org/10.3390/s150921746.
Короткова І.В., Сахно Т.В., Барашков М.М. Теоретичне дослідження процесів безвипромінбвальної дезактивації похідних ряду кумарину. Теоретична та експериментальна хімія. 1997. Т. 33. № 2. С. 105–110.
Сахно Т.В., Короткова І.В. Теоретичне дослідження впливу середовища на електронну будову похідних кумарину та хіноліну. Вісник Харківського університету. 1999. № 434. Біофізичний вісник, Вип. 3(1). С. 46–50.