SORPTIVE EXTRACTION OF IONIC FORMS OF СOPPER(II) FROM AQUEOUS SOLUTIONS BY A MAGNETICALLY SENSITIVE NANOCOMPOSITE WITH A HYDROXYAPATITE SURFACE

Authors

DOI:

https://doi.org/10.32782/naturaljournal.10.2024.6

Keywords:

magnetite, hydroxyapatite, ionic forms of сopper(II), ion sorption, sorption kinetics, sorption isotherms, surface chemistry, colloidal chemistry

Abstract

In the work, nanosized magnetite was synthesized by the Elmore method and its structure was investigated by a set of physicochemical methods. It was determined that the average size of the crystallites is 3–23 nm, the particles are spherical and capable of aggregation. Modification of the magnetite surface with nanosized hydroxyapatite using the sol-gel method was carried out, and a comparative analysis of the sorption activity of the resulting nanocomposite was carried out. It was found that at pH = 7.5, the degree of extraction of ionic forms of Copper(II) for Fe3O4 is 64.7%, and for Fe3O4/HA 87.5%, respectively. The best sorption of ionic forms of Copper(II) occurs in the pH range of 6.5–8.5. It was determined that in the first 30 minutes from the beginning of contact, more than 50% of the ionic forms of Copper(II) are removed from the solution by both surfaces, and the maximum value is reached after 60 minutes from the beginning of contact. Sorption equilibrium occurs after 75 minutes of sorbate-sorbent contact. It was established that the kinetic dependences are adequately described by the pseudo-second-order model. It is shown that the nature of the isotherm curves resembles the Langmuir isotherm curves (L2 – type) according to the Giles classification with saturation. The sorption capacity is 21.6 and 29.2 mg/g for Fe3O4 and Fe3O4/HA, respectively. It was determined that for both surfaces the sorption isotherm of the ionic forms of Copper(II) is described by the Langmuir model. This means that the sorption of ionic forms occurs on homogeneous (homogeneous) centers of the surface, where all active centers are energetically homogeneous and only a monomolecular layer of sorbate can form on the surface. Based on thermodynamic calculations of the Gibbs energies of the sorption process under standard conditions, it was determined that the sorption of ionic forms of Copper(II) from aqueous solutions by both surfaces is spontaneous, and the value of the heat of sorption indicates a purely physical sorption of ionic forms from solutions by Fe3O4 and Fe3O4/HA surfaces. The perspective of the Fe3O4/HA nanocomposite as a sorbent of ionic forms of Сopper(II) is shown.

References

Абрамов М.В., Кусяк А.П., Камінський О.М., Туранська С.П., Петрановська А.Л., Кусяк Н.В., Туров В.В., Горбик П.П. Синтез та властивості магніточутливих поліфункціональних нанокомпозитів для застосування в онкології. Поверхня. 2017. № 9 (24). С. 165–198. [Електронний ресурс]. URL: http://eprints.zu.edu.ua/id/eprint/27170 (дата звернення 20.09.2024).

Вода питна. Вимоги та методи контролювання якості ДСТУ 7525:2014 Видання офіційне. [Електронний ресурс]. URL: https://zakon.isu.net.ua/sites/default/files/normdocs/1-10672-dstu_voda_pytna.pdf (дата звернення 10.10.2024).

Камінський О.М., Денисюк Р.О., Чайка М.В., Писаренко С.В., Панасюк Д.Ю. Сорбція йонних форм Цинку(ІІ) з водних розчинів поверхнями магніточутливих нанокомпозитів, модифікованих гідроксиапатитом. Український журнал природничих наук. 2023. № 5. С. 70–79. https://doi.org/10.32782/naturaljournal.5.2023.8.

Камінський О.М., Кусяк Н.В., Петрановська А.Л., Абрамов М.В., Туранська С.П., Горбик П.П., Чехун В.Ф. Адсорбція комплексів цис-дихлордіамінплатини наноструктурами на основі магнетиту. Металофізика та новітні технології. 2013. Т. 35. № 3. С. 389–406. [Електронний ресурс]. URL: http://eprints.zu.edu.ua/id/eprint/17677 (дата звернення 15.09.2024).

Al-Saydeh S.A., El-Naas M.H., Zaidi S.J. Copper removal from industrial wastewater: A comprehensive review. Journal of Industrial and Engineering Chemistry. 2017. Vol. 56. P. 35–44. https://doi.org/10.1016/j.jiec.2017.07.026.

Baes Ch.F., Mesmer R.E. The hydrolysis of cations. Wiley: New Jork. 1976. 512 p.

Bazargan-Lari R., Zafarani H.R., Bahrololoom M.E., Nemati A. Removal of Cu(II) ions from aqueous solutions by low-cost natural hydroxyapatite/chitosan composite: Equilibrium, kinetic and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers. 2014. Vol. 45. № 4. P. 1642–1648. https://doi.org/10.1016/j.jtice.2013.11.009.

Butrin N., Rueangchai N., Noisong P., Sansuk S. Synthesis of hydroxyapatite/activated carbon composite with bioactivity property and copper ion removal efficiency. Materials Today Communications. 2024. Vol. 40. 109615 p. https://doi.org/10.1016/j.mtcomm.2024.109615.

Chaabane L., Beyou E., Luneau D., Baouab M.H.V. Functionalization of graphene oxide sheets with magnetite nanoparticles for the adsorption of copper ions and investigation of its potential catalytic activity toward the homocoupling of alkynes under green conditions. Journal of Catalysis. 2020. Vol. 388. P. 91–103. https://doi.org/10.1016/j.jcat.2020.04.019.

Chukanov N.V., Chervonnyi A.D. IR Spectra of Minerals and Related Compounds, and Reference Samples’ Data. In: Infrared Spectroscopy of Minerals and Related Compounds. Springer Mineralogy. Springer, Cham. 2016. https://doi.org/10.1007/978-3-319-25349-7_2.

Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption. [Електронний ресурс]. URL: https://www.legislation.gov.uk/eudr/2020/2184 (дата звернення 20.09.2024).

Frolova L.A., Hrydnieva T.V. Synthesis, structural, magnetic and photocatalytic properties of MFe2O4 (M=Co, Mn, Zn) ferrite nanoparticles obtained by plasmachemical method. Journal of Chemistry and Technologies. 2020. Vol. 28 (2). Р. 202–210. https://dx.doi.org/10.15421/082022.

Kumar P., Kumar Patel A., Singhania R.R., Chen Ch.-W., Saratale R.G., Dong Ch.-D. Enhanced copper (II) bioremediation from wastewater using nano magnetite (Fe3O4) modified biochar of Ascophyllum nodosum. Bioresource Technology. 2023. Vol. 388. 129654 p. https://doi.org/10.1016/j.biortech.2023.129654.

Pai Sh., Kini S., Selvaraj R., Pugazhendhi A. A review on the synthesis of hydroxyapatite, its composites and adsorptive removal of pollutants from wastewater Journal of Water Process Engineering. 2020. Vol. 38. 101574 p. https://doi.org/10.1016/j.jwpe.2020.101574.

Petranovska A.L., Abramov N.V., Turanska S.P., Gorbyk P.P., Kaminskiy A.N., Kusyak N.V. Adsorption of cis‑dichlorodiammineplatinum by nanostructures based on single-domain magnetite. Journal of Nanostructure in Chemistry. 2015. Vol. 5. № 3. Р. 275–285. https://doi.org/10.1007/s40097-015-0159-9.

Pooladi A., Bazargan-Lari R. Simultaneous removal of copper and zinc ions by Chitosan/Hydroxyapatite/nano-Magnetite composite. Journal of Materials Research and Technology. 2020. Vol. 9. № 6. P. 14841–14852. https://doi.org/10.1016/j.jmrt.2020.10.057.

Shahrashoub M., Bakhtiari S. The efficiency of activated carbon/magnetite nanoparticles composites in copper removal: Industrial waste recovery, green synthesis, characterization, and adsorption-desorption studies. Microporous and Mesoporous Materials. 2021. Vol. 311. 110692 р. https://doi.org/10.1016/j.micromeso.2020.110692.

Szcze A., Ho L., Chibowski E. Synthesis of hydroxyapatite for biomedical applications. Advances in Colloid and Interface Science. 2017. Vol. 249. Р. 321–330. https://doi.org/10.1016/j.cis.2017.04.007.

Published

2024-12-30