SYNTHESIS AND INVESTIGATION OF ALUMINUM-SUBSTITUTED SPINELS BASED ON ZNMN2O4: STRUCTURE, PROPERTIES, AND APPLICATION PROSPECTS
DOI:
https://doi.org/10.32782/naturaljournal.10.2024.9Keywords:
spinels, sol-gel method, aluminum substitution, bandgap, crystal structureAbstract
Spinels are important functional materials that are actively researched due to their promising properties in various fields such as catalysis, sensors, and batteries. Aluminum-substituted spinels based on ZnMn2O4 may exhibit enhanced properties compared to other materials in this class, thanks to their stability, broad tunability of the bandgap, and high porosity. The relevance of this work is underscored by the necessity to search for new materials with controllable properties for use in high-tech industries, particularly in energy applications, to adapt catalysts to modified substrates. This article presents the results of the synthesis and comprehensive study of the properties of aluminum-substituted spinels with the composition Zn(1-x)AlxMn2O4 (x = 0,05, 0,10, 0,15, 0,20, 0,25, 0,30) synthesized using the sol-gel method. For structural characterization and phase composition determination, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS), and scanning electron microscopy (SEM) methods were employed. The size of the diffracting crystallites was estimated using the Scherrer equation. X-ray phase analysis confirmed the single-phase nature of all samples regardless of the substitution level, indicating the stability of the obtained structures. Structural refinement was conducted using the Rietveld method, demonstrating a high correspondence between experimental diffractograms and theoretical models. The main parameters of the unit cell and the X-ray density were established, and changes in the metal-oxide distances in the coordination polyhedra were analyzed. FTIR spectroscopy revealed the presence of three absorption bands in the range of 1000 to 385 cm-¹ for both reference and substituted samples, with a gradual shift to the long-wavelength region. Bandgap, calculated using the Kubelka-Munk function and Tauc’s graphical method, changes from 2.76 eV to 2.90 eV with initial increases in substitution, then decreases to 2.53 eV with further increases in aluminum concentration. SEM studies confirmed the high porosity and developed surface area of the synthesized samples, which is a crucial characteristic for potential applications of these materials in various fields, including catalysis and sensors.
References
Almenia S.H., Ismail A.A., Alzahrani K.A., Aljahdali M. Design of mesoporous heterojunction CuCo₂O₄/Co₃O₄ photocatalyst with superior photocatalytic degradation of tetracycline. Journal of Photochemistry and Photobiology A. 2023. Vol. 438. P. 114507. https://doi.org/10.1016/j.jphotochem.2022.114507.
Almojil S.F., Ali M.A., Almohana A.I., Alali A.F., Almoalimi K.T., Althahban S., Sharma K., Ahmed A.N. Constructing a ZnO/CuCo₂O₄ p-n heterojunction photocatalyst for efficiently hexavalent chromium–phenol detoxification and nitrogen fixation. Journal of Physics and Chemistry of Solids. 2023. Vol. 172. P. 111057. https://doi.org/10.1016/j.jpcs.2022.111057.
Barth S., Hernandez-Ramirez F., Holmes J.D., Romano-Rodriguez A. Synthesis and applications of one-dimensional semiconductors. Progress in Materials Science. 2010. Vol. 55. P. 563–627. https://doi.org/10.1016/j.pmatsci.2010.02.001.
Bessekhouad Y., Trari M. Photocatalytic hydrogen production from suspension of spinel powders AMn₂O₄ (A = Cu and Zn). International Journal of Hydrogen Energy. 2002. Vol. 27. P. 357–362. https://doi.org/10.1016/s0360-3199(01)00159-8.
Blanco-Gutiérrez V., Torralvo-Fernández M.J., Sáez-Puche R. Magnetic behavior of ZnFe₂O₄ nanoparticles: Effects of a solid matrix and the particle size. Journal of Physical Chemistry C. 2010. Vol. 114. P. 1789–1795. https://doi.org/10.1016/s0360-3199(01)00159-8.
Chen J.P., Sorensen C.M. Size-dependent magnetic properties of MnFe₂O₄ fine particles synthesized by coprecipitation. Physical Review B. 1996. Vol. 54. P. 9288–9296. https://doi.org/10.1103/physrevb.54.9288.
Chen Y.C., Xie K., Pan Y., Zheng C.M. Effect of calcination temperature on the electrochemical performance of nanocrystalline LiMn₂O₄ prepared by a modified resorcinol-formaldehyde route. Solid State Ionics. 2010. Vol. 181. P. 1445–1450. https://doi.org/10.1016/j.ssi.2010.08.011.
Cui B., Lin H., Liu Y.Z., Li J.B., Sun P., Zhao X.C., Liu C.J. Photophysical and photocatalytic properties of core-ring structured NiCo₂O₄ nanoplatelets. Journal of Physical Chemistry C. 2009. Vol. 113. P. 14083–14087. https://doi.org/10.1021/jp900028t.
Ding D.W., Long M., Cai W.M., Wu Y.H., Wu D.Y., Chen C. In situ synthesis of photocatalytic CuAl₂O₄-Cu hybrid nanorod arrays. Chemical Communications. 2009. Vol. 24. P. 3588–3590. https://doi.org/10.1039/B903865E.
Fan H.M., Yi J.B., Yang Y., Kho K.W., Tan H.R., Shen Z.X., Ding J., Sun X.W., Olivo M.C., Feng Y.P. Single-crystalline MFe₂O₄ nanotubes/nanorings synthesized by thermal transformation process for biological applications. ACS Nano. 2009. Vol. 3. P. 2798–2808. https://doi.org/10.1021/nn9006797.
Ferraris G., Fierro G., Jacono M.L., Inversi M., Dragone R. A study of the catalytic activity of cobalt-zinc manganites for the reduction of NO by hydrocarbons. Applied Catalysis B: Environmental. 2002. Vol. 36. P. 251–260. https://doi.org/10.1016/S0926-3373(01)00289-2.
Fierro G., Jacono M.L., Dragone R., Ferraris G., Andreozzi G.B., Graziani G. Fe-Zn manganite spinels and their carbonate precursors: Preparation, characterization and catalytic activity. Applied Catalysis B: Environmental. 2005. https://doi.org/10.1016/j.apcatb.2004.10.007.
Guillemet-Fritsch S., Chanel C., Sarrias J., Bayonne S., Rousset A., Alcobe X., Martinez Sarriòn M.L. Structure, thermal stability and electrical properties of zinc manganites. Solid State Ionics. 2000. Vol. 128. P. 233–242. https://doi.org/10.1016/S0167-2738(99)00340-9.
Heiba Z.K., Ghannam M.M., Abdellatief M., Badawi A., Mohamed M.B. Structural, optical and shielding properties of transition metals (R: Mg, Sn and Bi) doped nano ZnMn₂O₄: A comparative study. Optical Materials. 2024. Vol. 152. P. 115511. https://doi.org/10.1016/j.optmat.2024.115511.
Kronik L., Shapira Y. Surface photovoltage phenomena: Theory, experiment, and applications. Surface Science Reports. 1999. Vol. 37. P. 1–206. https://doi.org/10.1016/S0167-5729(99)00002-3.
Patra P., Naik I., Bhatt H., Kaushik S.D. Structural, infrared spectroscopy and magnetic properties of spinel ZnMn₂O₄. Physica B: Condensed Matter. 2019. https://doi.org/10.1016/j.physb.2019.08.005.
Peiteado M., Caballero A.C., Makovec D. Diffusion and reactivity of ZnO-MnOx system. Journal of Solid State Chemistry. 2007. Vol. 180. P. 2459–2464. https://doi.org/10.1016/j.jssc.2007.07.001.
Peng H.Y., Wu T. Nonvolatile resistive switching in spinel ZnMn₂O₄ and ilmenite ZnMnO₃. Applied Physics Letters. 2009. Vol. 95. P. 152106. https://doi.org/10.1063/1.3249630.
Raj S., Manna R., Samanta A.N. Spinel ZnMn₂O₄ nanosphere for the efficient sulfamethazine degradation under visible light irradiation and photoelectrochemical study. Journal of Environmental Chemical Engineering. 2024. Vol. 12. P. 112277. https://doi.org/10.1016/j.jece.2024.112277.
Selim M.M., Deraz N.M., Elshafey O.I., El-Asmy A.A. Synthesis, characterization and physicochemical properties of nanosized Zn/Mn oxides system. Journal of Alloys and Compounds. 2010. Vol. 506. P. 541–547. https://doi.org/10.1016/j.jallcom.2010.04.180.
Shang J., Zhang T., Li X., Luo Y., Feng D., Cheng X. Mn₃O₄-ZnMn₂O₄/SnO₂ nanocomposite activated peroxymonosulfate for efficient degradation of ciprofloxacin in water. Separation and Purification Technology. 2023. Vol. 311. P. 123342. https://doi.org/10.1016/j.jtice.2024.105533.
Shi R., Wang Y.J., Li D., Xu J., Zhu Y.F. Synthesis of ZnWO₄ nanorods with [100] orientation and enhanced photocatalytic properties. Applied Catalysis B: Environmental. 2010. Vol. 100. P. 173–178. https://doi.org/10.1016/j.apcatb.2010.07.027.
Tian L., Yuan A.B. Electrochemical performance of nanostructured spinel LiMn₂O₄ in different aqueous electrolytes. Journal of Power Sources. 2009. Vol. 192. P. 693–697. https://doi.org/10.1016/j.jpowsour.2009.03.002.
Valadi F.M., Gholami M.R. Synthesis of CuCo₂O₄/BiVO₄ composites as promising and efficient catalysts for 4-nitrophenol reduction in water: Experimental and theoretical study. Journal of Environmental Chemical Engineering. 2021. Vol. 9. P. 105408. https://doi.org/10.1016/j.jece.2021.105408.
Wang Z.L. Characterizing the structure and properties of individual wirelike nanoentities. Advanced Materials. 2000. Vol. 12. P. 1295–1298. https://doi.org/10.1002/1521-4095(200009)12:17<1295::AID-DMA1295>3.0.CO;2-B.
Xia Y.N., Yang P.D., Sun Y.G., Wu Y.Y., Mayers B., Gates B., Yin Y.D., Kim F., Yan H.Q. Onedimensional nanostructures: Synthesis, characterization, and applications. Advanced Materials. 2003. Vol. 15. P. 353–389. https://doi.org/10.1002/adma.200390087.
Xiao L.F., Yang Y.Y., Yin J., Li Q., Zhang L.Z. Low temperature synthesis of flower-like ZnMn₂O₄ superstructures with enhanced electrochemical lithium storage. Journal of Power Sources. 2009. Vol. 194. P. 1089–1093. https://doi.org/10.1039/C3TA13511J.
Xu S.H., Feng D.L., Shangguan W.F. Preparations and photocatalytic properties of visible-light-active zinc ferrite-doped TiO₂ photocatalyst. Journal of Physical Chemistry C. 2009. Vol. 113. P. 463–467. https://doi.org/10.1021/jp806704y.
Yang Y.Y., Zhao Y.Q., Xiao L.F., Zhang L.Z. Nanocrystalline ZnMn₂O₄ as a novel lithium-storage material. Electrochemical Communications. 2008. Vol. 10. P. 1117–1120. https://doi.org/10.1016/j.elecom.2008.05.026.
Yu K.H., Chen J.H. Enhancing solar cell efficiencies through 1-D nanostructures. Nanoscale Research Letters. 2009. Vol. 4. P. 1–10. https://doi.org/10.1007/s11671-008-9200-y.
Zhang X.D., Wu S.Z., Zang J., Li D., Zhang Z.D. Hydrothermal synthesis and characterization of nanocrystalline Zn-Mn spinel. Journal of Physics and Chemistry of Solids. 2007. Vol. 68. P. 1583–1590. https://doi.org/10.1016/j.jpcs.2007.03.044.