SEARCH FOR RESISTANCE TO POTATO SOFT ROT IN THE CONDITIONS OF THE NORTH-EASTERN FOREST-STEPPE OF UKRAINE

Authors

DOI:

https://doi.org/10.32782/naturaljournal.11.2025.16

Keywords:

soft rot, potatoes, waterlogging, adaptation, biotechnology, phytohormones, viruses

Abstract

Plants are exposed to a variety of environmental stressors, including pathogens. It is pathogens that interact with susceptible plant varieties that can cause disease under certain environmental conditions. Soft rot pathogens (SRMs) of the Pectobacterium family are a group of pathogenic bacteria that are caused by waterlogging and the associated hypoxia, a common problem in agriculture. Excessive moisture is a favorable environment for this group of pathogens. Waterlogging itself is an important source of abiotic stress for plants due to reduced gas exchange, which is where hypoxia is detected. The plant response is modulated by hormonal changes that trigger metabolic and physiological adaptation to environmental conditions.Potato (Solanum tuberosum L.) is sensitive to this environmental stress, although it can senseand respond to hypoxia: in response to hypoxia, SRP induces the production of virulence factorsusing cyclic diguanylic acid (c-di-GMP). As a result, potato tubers have protection to conserve energy and prevent adverse weather conditions, but this does not always work, because sometimes plants are affected by soft rot. To reduce losses from soft rot, sensitive and reliable methods for detecting pathogens and isolating infected plants are needed.The aim of our study was to analyze, systematize data on the distribution, harmfulness, mechanismof resistance to waterlogging, and methods for controlling pathogens of the potato pathogen. Potato resistance to the pathogen may be due not only to waterlogging, but also to beneficial microorganisms that can trigger the plant’s natural defenses against bacterial infection. However, most of the known microorganisms beneficial to plants suffer from hypoxia and can be affected by plant pathogens, so we believe that to mitigate the impact on plants, by searching for microorganisms that can tolerate hypoxic conditions, or by improving the soil structure. The main elements of the potato response to hypoxiaand CRP (C-reactive protein) infection are analyzed, as well as future prospects for the prevention of soft rot, taking into account the influence of environmental conditions.A study was conducted to determine the resistance of interspecific hybrids, potato varieties to soft rot by field and laboratory-field methods in the conditions of the North-Eastern Forest-Steppe of Ukraine, as well as the analysis and generalization of the results obtained.

References

Методичні рекомендації щодо проведення досліджень з картоплею / Інститут картоплярства НААН. Немішаєве, 2020. 183 с.

Подгаєцький А.А. Інтегрована система захисту картоплі від хвороб, шкідників і бур’янів. Хвороби та шкідники картоплі, заходи боротьби з ними. Київ, 2002a. С. 137–155.

Подгаєцький А.А. Генофонд картоплі, його складові, характеристика і стратегія використання. Картопля. Київ, 2002b. Т. 1. С. 156–198.

Подгаєцький А.А., Коваль Н.Д. Створення вихідного матеріалу картоплі, стійкого проти сухої фузаріозної гнилі. Картоплярство. 1988. № 19. С. 5–19.

Положенець В.М., Марков І.А., Мельник П.О. Хвороби і шкідники картоплі. Житомир : Полісся, 1994. 200 с.

Сикало О.О., Мовчан О.М., Устінов І.Д. Карантинні шкідливі організми. Київ, 2005. № 2. С. 197–201.

Чечітко І.П. Використання генофонду картоплі для створення вихідного селекційного матеріалу, стійкого проти сухої фузаріозної гнилі : дис. … канд. с.-г. наук : 06.01.05. Немішаєве, 2000. 157 с.

Berger A., Boscari A., Frendo P., Brouquisse R. Nitric Oxide Signaling, Metabolism and Toxicity in Nitrogen-Fixing Symbiosis. Journal of Experimental Botany. 2019. 70. № 17. P. 39–55.

Camy C., Dreyer E., Delatour C., Marçais B. Responses of the Root Rot Fungus Collybia Fusipes to Soil Waterlogging and Oxygen Availability. Journal Mycological Research. 2003. № 107. P. 1103–1109. https://doi.org/10.1017/s095375620300830x.

Chung H., Lee H. Hypoxia: A Double-Edged Sword During Fungal Pathogenesis? Journal Frontiers in microbiology. 2020. № 11. P. 111–119. https://doi.org/10.3389/fmicb.2020.01920.

Francl L.J. The Disease Triangle: A Plant Pathological Paradigm Revisited. Plant Health Instr. American Journal of Molecular Biology. 2018. № 8 (2). https://doi.org/10.1094/PHI-T-2001-0517-01.

Geigenberger P. Response of Plant metabolism to too little oxygen. Current Opinion Plant Biology. 2003. № 6. P. 247–256.

Geigenberger P., Fernie A., Gibon Y., Christ M., Stitt M. Metabolic activity decreases as an adap-tive response to low internal oxygen in growing potato tubers. Journal of Biological Chemistry. 2000. № 381 (8). P. 723–740. https://doi.org/10.1515/BC.2000.093.

Lake J.A., Wade R.N. Plant-Pathogen Interactions and Elevated CO2: Morphological Changes in Favour of Pathogens. Journal of Experimental Botany. 2009. № 60. Р. 231–245. https://doi.org/10.1093/jxb/erp147.

Lee H.J., Park J.S., Shin S.Y., Kim S.G., Lee G., Kim H.S., Jeon J.H., Cho H.S. Submergence Deactivates Wound-Induced Plant. Defence against Herbivores. Journal Communications Biology. 2020. № 3. P. 123–135.

Leisner C.P., Potnis N., Sanz-Saez A. Crosstalk and trade-offs: Plant responses to climate change-associated abiotic and biotic stresses. Journal Plant Cell Environ. 2023. № 46 (10). Р. 2946–2963. https://doi.org/10.1111/pce.14532.

Lisicka W., Fikowicz-KroskoJ., Jafra S., Narajczyk M., Czaplewska P., Czajkowski R. Oxygen Availability Influences Expression of Dickeya solani Genes Associated with Virulence in Potato (Solanum tuberosum L.) and Chicory (Cichorium intybus L.) / W. Lisicka et al. Journal Frontiers in Plant Science. 2018. № 21 (9). Р. 324–337. https://doi.org/10.3389/fpls.2018.00374.

Manik S., Pengilley G., Dean G., Field B., Shabala S., Zhou M. Soil and Crop Management Practices to Minimize the Impact of Waterlogging on Crop Productivity. Journal Frontiers in Plant Science. 2019. № 10. Р. 245–265. https://doi.org/10.3389/fpls.2019.00140.

Mansfield J., Genin S., Magori S., Citovsky V., Sriariyanum M., Ronald, P., Dow M., Verdier V., Beer S.V., Machado M.A. Top 10 plant pathogenic bacteria in molecular plant pathology. Journal Molecular Plant Pathology. 2012. № 13 (6). Р. 614–629. https://doi.org/10.1111/j.1364-3703.2012.00804.x.

Mori K., Beauvoit B., Biais B., Chabane M., Allwood J., Deborde C., Maucourt M., Goodacre R., Cabasson C., Moing A., et al. Central Metabolism Is Tuned to the Availability of Oxygen in Developing Melon Fruit / K. Mori et al. Journal Frontiers in Plant Science. 2019. № 10. P. 132–145. https://doi.org/10.3389/fpls.2019.00594.

Nawaz M., Sun J., Shabbir S., Khattak W.A., Ren G., Nie X., Bo Y., Javed, Q., Sonne C. A review of plants strategies to resist biotic and abiotic environmental stressors. Journal Science of The Total Environment. 2023. № 9. Р. 165–185.

Pan J., Sharif R., Xu X., Chen X. Mechanisms of Waterlogging Tolerance in Plants: Research Progress and Prospects. Journal Frontiers in Plant Science. 2021. № 11. Р. 78–89. https://doi.org/10.3389/fpls.2020.627331.

Tang G., Zhang C., Ju Z., Zheng S., Wen Z., Xu S., Chen Y., Ma Z. The mitochondrial mem-brane protein FgLetm1 regulates mitochondrial integrity, production of endogenous reactive oxygen species and mycotoxin biosynthesis in fusarium graminearum. Journal Molecular Plant Pathology. 2018. № 19. https://doi.org/10.1111/mpp.12633.

Tian X., Zhang C., Chen L., Zhang F., Li J., Yan F., Dong Y., Feng L. How Does the Waterlogging Regime Affect Crop Yield? A Global Meta-Analysis. Journal Frontiers in Plant Science. 2021. № 12. 634898. https://doi.org/10.3389/fpls.2021.634898.

Tromans D. Temperature and Pressure Dependent Solubility of Oxygen in Water: A Thermodynamic Analysis. Journal Hydrometallurgy. 1998. № 48. Р. 327–342. https://doi.org/10.1016/S0304-386X(98)00007-3.

Weits A., Kunkowska B., Kamps W., Portz S., Packbier K., Nemec Venza Z., Gaillochet C., Lohmann U., Pedersen O., van Dongen T., et al. An apical hypoxic niche sets the pace of shoot meristem activ-ity. Journal Nature. 2019. № 569. Р. 714–727. https://doi.org/10.1038/s41586-019-1203-6.

Zhou A., Liu J., Tian Y., Chuan J., Hu B., Zou J., Li X. First Report of Dickeya fangzhong-dai causing soft rot in Orchids in Canada. Journal Plant Disease. 2021. № 23. P. 123–144. https://doi.org/10.1094/PDIS-04-21-0771-PDN.

Published

2025-03-28