SYNTHESIS AND PROPERTIES OF NANODISPERSED LUMINESCENT STRUCTURES BASED ON LANTHANUM FLUORIDE FOR OPTOPHARMACOLOGY AND PHOTODYNAMIC THERAPY

Authors

DOI:

https://doi.org/10.35433/naturaljournal.2.2023.156-166

Keywords:

lanthanum fluoride, phosphors, optopharmacology, photodynamic therapy.

Abstract

Nanocrystalline lanthanum fluoride of hexagonal syngonium and terbium-activated lanthanum fluoride were synthesized. The structural characteristics of the synthesized samples were investigated by XRD, TEM, FTIR, PCS methods. The colloidal stability of the suspensions and the acid-base characteristics of the surface were evaluated in the environment of physiological solution. Substitution of La ions by Tb ions in LaF3:Tb samples does not lead to a significant distortion of the crystal structure, but it significantly affects the dimensional characteristics, specific surface area, charge and acid-base characteristics. The given data indicate the perspective of research of nanodispersed phosphors based on lanthanum fl uoride for use in optopharmacology and photodynamic therapy of tumor diseases localized in the organ s of the skull and bone tissues. In addition, research results can be useful for technical applications, in particular, in the creation of fluorescent detectors of high-energy electromagnetic radiation, development of photo- and optoelectronic devices, etc.

References

Abramov M. V., Kusyak A. P., Kaminskiy O. M., Turanska S. P., Petranovska A. L., Kusyak N. V. and Gorbyk P. P. Magnetosensitive Nanocomposites Based on Cisplatin and Doxorubicin for Application in Oncology. In Horizons in World Physics. 2017. V.293. P.1-56.

Abramov M. V.a, Turanska S. P., Gorbyk P. P. Magnetic properties of nanocomposites of a superparamagnetic core–shell type. Metallofiz Noveishie Technol. 2018. V. 40 (4). P.423-500. https://doi.org/10.15407/mfint.40.04.0423.

Abramov M. V.b, Turanska S. P., Gorbyk P. P. Magnetic Properties of Fluids Based on Polyfunctional Nanocomposites of Superparamagnetic Core–Multilevel Shell Type. Metallofiz Noveishie Technol. 2018. V. 40 (10). P. 1283-1348. https://doi.org/10.15407/mfint.40.10.1283.

DiMaio J., Kokuoz B., James T. L., Harkey T., Monofsky D., Ballato J. Photoluminescent сharacterization of atomic diffusion in core-shell nanoparticles. Opt Exp. 2008. V. 16 (16). P. 11769-11775. https://doi.org/10.1364/OE.16.011769.

Gorbyk P. P., Lerman L. B., Petranovska A. L., Turanska S. P. and Pylypchuk I. V. Magnetosensitive Nanocomposites with Hierarchical Nanoarchitecture as Biomedical Nanorobots: Synthesis, Properties, and Application. In Fabrication and Self-Assembly of Nanobiomaterials, Applications of Nanobiomaterials. Elsevier. 2016. P. 289-334. https://doi.org/10.1016/B978-0-323-41533-0.00010-6.

Gorobets’ S. V., Gorobets’ О. Y., Gorbyk P. P., Uvarova І. V. Functional Bio- and Nanomaterials of Medical Destination. Kyiv: Kondor. 2018. Hsiu-Wen C., Chien-Hao H., Chien-Hsin Y., Tzong-Liu W. Synthesis, optical properties, and sensing applications of LaF3:Yb3+/Er3+/Ho3+/Tm3+ upconversion nanoparticles. Nanomater. 2020. V. 10 (12). P. 2477-2498. https://doi.org/10.3390/nano10122477.

Jing K., Guo X., Diao X., Wu Q., Jiang Y., Sun Y., Zhu Y. Synthesis and characterization of dipicolinate sensitized LaF3 :Tb3+ nanoparticles and their interaction with bovine serum albumin. J Lumin. 2015. V.157. P.184-192. https://doi.org/10.1016/j.jlumin.2014.08.061.

Kasturi S., Marikumar R., Vaidyanathan S. Trivalent rare-earth activated hexagonal lanthanum fluoride (LaF3:RE3+, where RE=Tb, Sm, Dy and Tm) nanocrystals: Synthesis and optical properties. Luminescence. 2018. V. 33 (5). P. 897-906. https://doi.org/10.1002/bio.3488.

Kusyak N. V., Kusyak А. P., Svyrydiuk K. P., Petranovska A. L., Gorbyk P. P. Evaluation of the acid–base surface properties of nanoscale Fe3O4 and Fe3O4/SiO2 by potentiometric method. Mol Cryst Liq Cryst. 2021. V. 719 (1). 140-152. https://doi.org/10.1080/15421406.2021.1878744.

Liu Y., Chen W., Wang S., Joly A. G., Westcott S. and Woo B. K. X-ray luminescence of LaF3:Tb3+ and LaF3:Ce3+, Tb3+ water-soluble nanoparticles. J Appl Phys. 2008. V. 103 (6). 063105. https://doi.org/10.1063/1.2890148.

Mangaiyarkarasi R., Chinnathambi S., Karthikeyan S., Aruna P., Ganesan S. Paclitaxel conjugated Fe3O4@LaF3:Ce3+,Tb3+ nanoparticles as bifunctional targeting carriers for cancer theranostics application. J Magn Magn Mater. 2016. V. 399 (1). P. 207-215. https://doi.org/10.1016/j.jmmm.2015.09.084.

Min-Hua C., Yi-Jhen J., Sheng-Kai W., Yo-Shen C., Nobutaka H., Feng-Huei L. Non-invasive photodynamic therapy in brain cancer by use of Tb3+-doped LaF3 nanoparticles in combination with photosensitizer through X-ray irradiation: a proof-ofconcept study. Nanoscale Res Let. 2017. 12. 62. https://doi.org/10.1186/s11671-017- 1840-3.

Patro L. N., Kamala Bharathi K., Ravi Chandra Raju N. Microstructural and ionic transport studies of hydrothermally synthesized lanthanum fluoride nanoparticles. AIP Adv. 2014. V. 4. 127139. https://doi.org/10.1063/1.4904949.

Roco M. C., Williams R. S., Alivisatos P. Vision for Nanotechnology R&D in the Next Decade. Dordrecht: Kluwer Acad. Publ. 2002.

Tang Y., Hu J., Elmenoufy A. H., Yang X. Highly efficient FRET system capable of deep photodynamic therapy established on X-ray excited mesoporous LaF3:Tb scintillating nanoparticles. ACS Appl Mater Int. 2015. V. 7 (22). P. 12261-12269. https://doi.org/10.1021/acsami.5b03067. Zhang F., Braun G. B., Pallaoro A., Zhang Y., Shi Y., Cui D., Moskovits M., Zhao D., Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy. Nano Let. 2012. V. 12 (1). P. 61-67. https://doi.org/10.1021/nl202949y.

Published

2023-04-04