OPTIMIZATION OF ETCHANT K2CR2O7 – HBR – LACTIC ACID FOR REMOVING THIN LAYERS FROM THE SURFACE OF CDTE AND ZNXCD1-XTE
DOI:
https://doi.org/10.32782/naturaljournal.11.2025.39Keywords:
chemical dissolution, solid solutions, cadmium telluride, single crystals, etchant, dissolution rate, chemical-dynamic polishingAbstract
In the work, the regularities of chemical-dynamic polishing of the surface of CdTe single crystalsand ZnxCd1-xTe solid solutions (x = 0.04 and 0.1) in aqueous solutions of the system K2Cr2O7 – HBr – lactic acid were investigated. For the first time, the kinetic regularities of the dissolution processof semiconductor surfaces in these solutions were revealed under reproducible hydrodynamic conditions using the rotating disk method. The diagrams “solution composition – polishing rate” of single crystals in the etching compositions of the system K2Cr2O7 – HBr – lactic acid were constructed using the method of mathematical planning of the experiment on a simplex based on the research results, and the concentration limits of polishing and non-polishing solutions were established.The influence of lactic acid and the nature of semiconductors on the dissolution regularities and state of polished surface of CdTe, Zn0.04Cd0.96Te, and Zn0.1Cd0.9Te was determined. It was found that during the polishing of ZnxCd1-xTe solid solutions using the developed etching compositions, an increase inZn content in the semiconductor leads to higher dissolution rates, broader polishing area boundaries, and improved polished surface quality.Kinetic studies confirmed that the physicochemical interaction of semiconductors with polishing etchants is diffusion-limited. It was revealed that the developed etching compositions retain their polishing effect over an extended period (up to 10 days), with only a slight decrease in the polishing rate.A series of new slow polishing etchants was created, optimal parameters of CDP process were developed, and an effective method for washing polished samples after different processing stages was proposed. The surface condition of the samples after treatment was investigated by metallographic, profilometric analyses and atomic force microscopy. It was demonstrated that polishing with the developed etching solutions contributes to the formation of super-smooth (Ra ≤ 10 nm) surface for CdTe single crystals and ZnxCd1-xTe solid solutions.
References
Левченко І.В., Стратійчук І.Б., Томашик В.М., Маланич Г.П., Кравецький М.Ю., Корчовий А.А. Хімічне травлення поверхні InAs, InSb, GaAs та GaSb. Науковий вісник Чернівецького університету. Серія «Хімія». 2016. № 781. С. 60–67.
Левченко І.В., Стратійчук І.Б., Томашик В.М., Маланич Г.П., Корчовий А.А. Хімічне розчинення InAs, InSb, GaAs та GaSb в травильних композиціях (NH4)2Cr2O7 − HBr − H2O. Вісник Одеського національного університету. Серія «Хімія». 2017. Т. 22. (3). С. 63–72.
Чайка М.В., Денисюк Р.О., Томашик З.Ф., Томашик В.М. Хімічна взаємодія CdTe, ZnxCd1-xTe та CdxHg1-xTe з водними розчинами К2Cr2O7 – HBr (HCl). Питання хімії та хімічної технології. 2018. № 1. С. 51–56.
Чайка М.В., Томашик З.Ф., Томашик В.М., Маланич Г.П., Корчовий А.А. Особливості хімічного розчинення монокристалів CdTe, ZnxCd1-xTe та CdxHg1-xTe у водних розчинах K2Cr2O7 – HBr – C4H6O6. Вопросы химии и химической технологии. 2018. № 6. С. 99–106. http://dx.doi.org/10.32434/0321-4095-2018-121-6-99-106.
Чайка М.В., Томашик З.Ф., Маланич Г.П., Томашик В.М., Панасюк Д.Ю., Камінський О.М. Фізико-хімічна взаємодія монокристалів CdTe та ZnxCd1–xTe з водними розчинами К2Cr2O7 – HBr – оксалатна кислота. Питання хімії та хімічної технології. 2020. № 4. С. 187–193. http://dx.doi.org/10.32434/0321-4095-2020-131-4-187-193.
Чухненко П.С., Іваніцька В.Г., Томашик З.Ф., Томашик В.М., Стратійчук І.Б. Хімічне травлення легованих елементами IV групи монокристалів CdTe водними розчинами (NH4)2Cr2O7–HBr. Науковий вісник Чернівецького університету. Серія «Хімія». 2009. № 473. С. 43–46.
Chayka M.V., Tomashyk Z.F., Tomashyk V.M., Malanych G.P., Korchovyi A.A. Optimization of bromine-emerging etching compositions K2Cr2O7-HBr-ethylene glycol for forming a polished surface of CdTe, ZnxCd1-xTe and CdxHg1-xTe. Functional Materials. 2019. Vol. 26 (1). P. 189–196. https://doi.org/10.15407/fm26.01.189.
Chayka M., Tomashyk Z., Tomashyk V., Malanych G., Korchovyi A. Formation of nanosized relief on the CdTe single crystals surface by bromine-emerging etchants. Applied Nanoscience. 2022. Vol. 12. P. 603–609. https://doi.org/10.1007/s13204-021-01716-8.
Jafarov M.A., Nasirov E.F., Jahangirova S. ZnS/Cu2ZnSnS4/CdTe/In Thin Film Structure for Solar Cells. Journal of Advances in Physics. 2018. Vol. 14 (2). Р.5435–5441. https://doi.org/10.24297/jap.v14i2.7395.
Kosyachenko L.A., Yurtsenyuk N.S., Rarenko I.M., Sklyarchuk V.M., Sklyarchuk O.F., Zakharuk Z.I., Grushko E.V. Charge transport mechanisms in Schottky diodes based on low-resistance CdTe:Mn. Semiconductors. 2013. Vol. 47 (7). Р. 916–924. https://doi.org/10.1134/S1063782613070129.
Levchenko I.V., Tomashyk V.M., Stratiychuk I.B., Malanych G.P., Stanetska A.S., Korchovyi A.A. Chemical polishing of InAs, InSb, GaAs and GaSb. Functional materials. 2017. Vol. 24 (4). P. 654–659. https://doi.org/10.15407/fm24.04.654.
Levchenko I., Tomashyk V., Stratiychuk I., Malanych G., Korchovyi A., Kryvyi S., Kolomys O. Formation of the InAs, InSb, GaAs and GaS-polished surface. Applied Nanoscience. 2018. Vol. 8. Р. 949–953. https://doi.org/10.1007/s13204-018-0788-7.
Levchenko I., Tomashyk V., Malanych G., Stratiychuk I., Korchovyi A. Improvement the InAs, InSb, GaAs and GaSb surface state by nanoscale wet etching. Applied Nanoscience. 2022. Vol. 12. P. 1139–1145. https://doi.org/10.1007/s13204-021-01784-w.
Machniy V.P., Skrypnyk N.J. Mechanisms of current flow in Au-CdTe contacts with a modified sur-face. Semiconductors. 2011. Vol. 45 (3). Р. 312–315. https://doi.org/10.1134/S106378261103016X.
Ojo A.A., Salim H.I., Dharmadasa I.M. The influence of ZnS crystallinity on all-electroplated ZnS/CdS/CdTe graded bandgap device properties. Journal of Materials Science: Materials in Electronics. 2018. Vol. 29 (16). Р. 13631–13642. https://doi.org/10.1007/s10854-018-9491-4.
Rodríguez-Fernández J., Carcelén V., Hidalgo P., Vijayan N., Piqueras J., Sochinskii N.V., Perez J.M., Diéguez E. Relationship between the cathodoluminescence emission and resis-tivity in In doped CdZnTe crystals. Journal of Applied Physics. 2009. Vol. 106 (4). P. 044901. https://doi.org/10.1063/1.3197031.
Wright J.S., Washington A.L., Duff M.C., Burger A., Groza M., Matei L., Buliga V. The Effect of Subbandgap Illumination on the Bulk Resistivity of CdZnTe. Journal of Electronic Materials. 2013. Vol. 42. P. 3119–3124. https://doi.org/10.1007/s11664-013-2676-y.
Ye J., Wang S., Zhu C., Xu G., Luo L. Wafer level packaging for GaAs optical detector using through wafer grooves (TWG) fabricated by mechanical dicing and wet etching. 14th International Conference on Electronic Packaging Technology, Dalian, China. 2013. Р. 1305–1307. https://doi.org/10.1109/ICEPT.2013.6756697.
Ye J., Wang S., Zhu C., Xu G., Luo L. Novel combined through – wafer - groove fabrication approach and its application in wafer level packaging of GaAs CCD. Microsystem Technologies. 2016. Vol. 22 (8). Р. 1983–1989. https://doi.org/10.1007/s00542-015-2507-6.