LUNGS HISTOMORPHOLOGУ OF THE CLARII CATFISH (CLARIAS GARIEPINUS)
DOI:
https://doi.org/10.32782/naturaljournal.12.2025.3Keywords:
vertebrates; lungs morphology; histological structure; morphometryAbstract
The vital activity of living organisms for their existence is essential for providing cells and tissues with oxygen and nutrients and the excretion of metabolic products. The body’s response to environmental influences, uniting all organs and systems into a single whole, requires the regular morphofunctional activity of all body systems, including the respiratory system, which served as the purpose of the research.Using macro- and microscopic, morphometric, and statistical research methods, the results are presented on the microscopic structure of the gills of the Clarius catfish. Thus, in the gas exchange system of birefringent fish, represented by the Clarius catfish, changes occur in the process of their phylogenetic development (two circles of blood circulation are formed), which are characteristic of amphibians, in which, in addition to gills, paired lungs are also formed, thanks to which animals can breathe atmospheric air.The gills of the Clarius catfish are formed by branched anatomical structures located on the second and fourth-gill arches. These are paired pale pink morphological structures with cellular walls connected to the esophagus. The medial and lateral lobes form the right and left lungs: starting from the gill cavities, the main trunk of the medial lobe of the lungs branches out like a tree into four large branches, which are divided into medium, small, giving rise to thick-walled alveoli. The lateral lobe of the lungs begins with a separate trunk that is not connected to the medial lobe of the lungs.The lungs of the Claria catfish are covered with a connective tissue membrane (pleura), which is microscopically formed by three layers: outer, middle, and inner. The microscopic structure of the wall of the bronchi of the lungs is built of three membranes – outer, middle (muscular), and inner: the surface of the wall of the outer membrane is formed by epithelial cells that form elongated villi, the lamina propria of the membrane is formed by loose connective tissue, in which a network of blood vessels is located; the muscular membrane of the wall is formed by transversely striated muscle tissue, the fibers of which have a longitudinal direction; the inner membrane is thin and formed by elongated epithelial cells. The cavity of the bronchi, throughout the entire interval of the bronchial tree, ending in the pulmonary alveoli, is filled with reticular tissue.According to morphometric studies, the most prominent morphometric parameters (wall thickness, thickness of the bronchial cavity) are characteristic of large, then medium, and, accordingly, small bronchi. Pulmonary alveoli have a rounded shape; microscopically, a significant network of vessels (capillaries) of the microcirculatory bed is detected in the wall of the connective tissue membrane. The average volume of pulmonary alveoli is 94770 ± 909 thousand. mcm3, the average volume of the alveoli cavity, filled with reticular tissue, is 27862 ± 413 thousand. mcm3. With such indicators, the ratio of the volume of the alveoli cavity to the volume of its wall is 0.4164.
References
Алексієнко В.Р. Іхтіологія : посібник. Київ : Український фітосоціологічний центр, 2007. 116 с.
Горальський Л.П., Хомич В.Т., Кононський О.І. Основи гістологічної техніки і морфофункціональні методи досліджень у нормі та при патології : навч. посіб. вид. 3-є, випр. і допов. Житомир : Полісся, 2015. 286 с.
Мельник О.П., Костюк В.В., Шевченко П.Г. Анатомія риб : підручник. Київ : Центр учбової літератури, 2008. 620 с.
Шерман І.М., Пилипенко Ю.В., Шевченко П.Г. Загальна іхтіологія : підручник. Київ : Аграрна освіта, 2009. 454 с.
Царик Й.В., Хамар І.С., Дикий І.В. Зоологія хордових : підручник. Львів : ЛНУ ім. Івана Франка, 2018. 356 с.
Abalaka S.E., Oyelowo F.O., Akande M.G., Tenuche O.Z., Sani N.A., Adeyemo B.T., Idoko I.S., Ogbe A.O., Ejeh S.A. Effects of Moringa oleifera leaves extract, vitamin C, and taurine co-exposures on calcium and metallothionein levels, oxidative stress, and gill histopathological changes in Clarias gariepinus exposed to sub-lethal cadmium. Environmental Science and Pollution Research. 2021. P. 5225–52271. https://doi.org/10.1007/s11356-021-14426-z.
Amelio D., Garofalo F. Morpho-functional changes of lungfish Protopterus dolloi skin in the shift from freshwater to aestivating conditions. Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology. 2023. Vol. 266. P. 110846. https://doi.org/10.1016/ j.cbpb.2023.110846.
Amin-Naves J., Giusti H., Glass M.L. Effects of acute temperature changes on aerial and aquatic gas exchange, pulmonary ventilation and blood gas status in the South American lungfish, Lepidosiren paradoxa. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2004. Vol. 138. №. 2. P. 133–139. https://doi.org/10.1016/j.cbpb.2004.02.016.
Barreto R.E., Volpato G.L. Caution for using ventilatory frequency as an indicator of stress in fish. Behavioural processes. 2004. Vol. 66. № 1. P. 43–51. https://doi.org/10.1016/j.beproc.2004.01.001.
Baßmann B., Brenner M., Palm H.W. Stress and welfare of african catfish (clarias gariepinus Burchell, 1822) in a coupled aquaponic system. Water. 2017. Vol. 9. № 7. P. 504. https://doi.org/ 10.3390/w9070504.
Britz P.J., Hecht T. Temperature preferences and optimum temperature for growth of african sharptooth catfish (clarias gariepinus) larvae and postlarvae. Aquaculture. 1987. Vol. 63. № 1–4. P. 205–214. https://doi.org/10.1016/0044-8486(87)90072-X.
Chervinski J. Salinity tolerance of young catfish, Clarias lazera (Burchell). Journal of Fish Biology. 1984. Vol. 25. № 2. P. 147–149. https://doi.org/10.1111/j.1095-8649.1984.tb04861.x.
Cieri R.L. Pulmonary smooth muscle in vertebrates: a comparative review of structure and function. Integrative and comparative biology. 2019. Vol. 59. № 1. P. 10–28. https://doi.org/10.1093/icb/ icz002.
Clay D. Preliminary observations on salinity tolerance Clarias lazera, Israel. Bamidgeh. 1977. Vol. 29. № 3. P. 102–109.
Da Silva G.S.F., Ventura D.A.D.N., Zena L.A., Giusti H., Glass M.L., Klein W. Effects of aerial hypoxia and temperature on pulmonary breathing pattern and gas exchange in the South American lungfish, Lepidosiren paradoxa. Molecular & Integrative Physiology. 2017. Vol. 207. P. 107–115. https://doi.org/10.1016/j.cbpa.2017.03.001.
DeLaney R.G., Laurent P., Galante R., Pack A.I., Fishman A.P Pulmonary mechanoreceptors in the dipnoi lungfish Protopterus and Lepidosiren. The American journal of physiology. 1983. Vol. 244. № 3. P. R418–R428. https://doi.org/10.1152/ajpregu.1983.244.3.R418.
Farmer C.G. Evolution of the vertebrate cardio-pulmonary system. Annual review of physiology. 1999. Vol. 61. P. 573–592. https://doi.org/10.1146/annurev.physiol.61.1.573.
Fishman A.P., DeLaney R.G., Laurent P. Circulatory adaptation to bimodal respiration in the dipnoan lungfish. Journal of applied physiology. 1985. Vol. 59. № 2. P. 285–294. https://doi.org/10.1152/jappl.1985.59.2.285.
Florindo L.H., Reid S.G., Kalinin A.L., Milsom W.K., Rantin F.T. Cardiorespiratory reflexes and aquatic surface respiration in the neotropical fish tambaqui (Colossoma macropomum): acute responses to hypercarbia. Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology. 2004. Vol. 174. № 4. P. 319–328. https://doi.org/10.1007/ s00360-004-0417-5.
Gam L.T.H., Thanh Huong D.T., Tuong D.D., Phuong N.T., Jensen F.B., Wang T., Bayley M. Effects of temperature on acid-base regulation, gill ventilation and air breathing in the clown knifefish, Chitala ornata. The Journal of experimental biology. 2020. Vol. 223. № 4. P. jeb216481. https://doi.org/10.1242/jeb.216481.
Hassan M., Melad A.A.N., Zakariah M.I., Yusoff N.A.H. Histopathological alterations in gills, liver and kidney of african catfish (Clarias gariepinus, Burchell 1822) exposed to melaleuca cajuputi extract. Tropical Life Sciences Research. 2023. Vol. 34. № 2. P. 177–196. https://doi.org/10.21315/ tlsr2023.34.2.9.
Hecht T., Oellermann L., Verheust L. Perspectives on clarid culture in Africa. The Biology and Culture of Catfishes. 1996. Vol. 9. P. 197–206. https://doi.org/10.1051/alr:1996054.
Hildebrand M.-C., Rebl A., Nguinkal J.A., Palm H.W., Baßmann B. Effects of Fe-DTPA on health and welfare of the african catfish clarias gariepinus (Burchell, 1822). Water. 2023. Vol. 15. № 2. P. 299. https://doi.org/10.3390/w15020299.
Hillman S.S., Hancock T.V., Hedrick M.S. A comparative meta-analysis of maximal aerobic metabolism of vertebrates: implications for respiratory and cardiovascular limits to gas exchange. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology. 2013. Vol. 183. № 2. P. 167–179. https://doi.org/10.1007/s00360-012-0688-1.
Hogendorn H., Vismans M.M. Controlled propagation of the Africa Clarias lazera (C.&V.). II. Artificial reproduction. Aquaculture. 1980. Vol. 21. № 1. P. 39–53. https://doi.org/ 10.1016/0044-8486(80)90124-6.
Honcharova O.V., Paraniak R.P., Kutishchev P.S., Paraniak N.M., Hradovych N.I., Matsuska O.V., Rudenko O.P., Lytvyn N.A., Gutyj B.V., Maksishko L.M. The influence of environmental factors on fish productivity in small reservoirs and transformed waters. Ukrainian Journal of Ecology. 2021. Vol. 11. № 1. P. 176–180. https://doi.org/10.15421/2021_27.
Horalskyi L.P., Demus N.V., Sokulskyi I.M., Gutyj B.V., Kolesnik N.L., Pavliuchenko O.V., Horalska I.Y. Species specifics of morphology of the liver of the fishes of the Cyprinidae family. Regulatory Mechanisms in Biosystems. 2023. Vol. 14. № 2. P. 234–241. https://doi.org/10.15421/022335.
Horalskyi L., Hlukhova N., Sokulskyi I. Morphological traits of rabbit lung. Scientific Horizons. 2020. Vol. 93. № 8. P. 180–188. https://doi.org/10.33249/2663-2144-2020-93-8-180-188.
Horalskyi L.P., Hlukhova N., Sokulskyi I., Kolesnik N. Morphological features and morphometric parameters of the lungs of sexually mature horses (Equus Ferus Caballus L., 1758). Ukrainian Journal of Veterinary Sciences. 2022a. Vol. 13. № 1. P. 25-33. https://doi.org/10.31548/ ujvs.13(1).
Horalskyi L.P., Ragulya М.R., Glukhova N.M., Sokulskiy I.M., Kolesnik N.L., Dunaievska O.F., Gutyj B.V., Goralska I.Y. Morphology and specifics of morphometry of lungs and myocardium of heart ventricles of cattle, sheep and horses. Regulatory Mechanisms in Biosystems. 2022b. Vol. 13. № 1. P. 53–59. https://doi.org/10.15421/022207.
Horsfield K. Morphology of the bronchial tree in the dog. Respiration Physiology. 1976. Vol. 26. № 2. P. 173–182. https://doi.org/10.1016/0034-5687(76)90095-5.
Huang C.Y., Lee W., Lin H.C. Functional differentiation in the anterior gills of the aquatic air- breathing fish, Trichogaster leeri. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology. 2008. Vol. 178. № 1. P. 111–121. https://doi.org/10.1007/ s00360-007-0205-0.
Huisman E.A., Richter, C.J.J. Reproduction, growth, health control and aquacultural potential of the african catfish, clarias gariepinus (Burchell 1822). Aquaculture. 1987. Vol. 63. № 1–4. P. 1–14. https://doi.org/10.1016/0044-8486(87)90057-3.
Katz S.L. Ventilatory control in a primitive fish: signal conditioning via non-linear O2 affinity. Respiration Physiology. 1996. Vol. 103. № 2. P. 165–175. https://doi.org/10.1016/0034-5687(95)00081-x.
Kofonov K., Potrokhov О., Hrynevych N., Zinkovskyi O., Khomiak O., Dunaievska O., Rud O. et al. Changes in the biochemical status of common carp juveniles (Cyprinus carpio L.) exposed to ammonium chloride and potassium phosphate. Ukrainian Journal of Ecology. 2020. Vol. 10. № 4. P. 137–147.
Lawal B.M., Adewole H.A., Olaleye V.F. Digestibility study and nutrient re-evaluation in clarias gariepinus fed blood meal-rumen digesta blend diet. Notulae Scientia Biologicae. 2017. Vol. 9. № 3. P. 344–349. https://doi.org/10.15835/nsb9310047.
Lütge M., Pikor N.B., Ludewig B. Differentiation and activation of fibroblastic reticular cells. Immunological Reviews. 2021. Vol. 302. № 1. P. 32–46. https://doi.org/10.1111/imr.12981.
Maina J.N., van Gils P. Morphometric characterization of the airway and vascular systems of the lung of the domestic pig, Sus scrofa: comparison of the airway, arterial and venous systems. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology. 2001. Vol. 130. № 4. P. 781–798. https://doi.org/10.1016/s1095-6433(01)00411-1.
McFawn P.K., Mitchell H.W. Bronchial compliance and wall structure during development of the immature human and pig lung. The European Respiratory Journal. 1997. Vol. 10. № 1. P. 27–34. https://doi.org/10.1183/09031936.97.10010027.
Kukhtyn M., Malimon Z., Salata V., Rogalskyy I., Gutyj B., Kladnytska L., Kravcheniuk K., Horiuk Y. The Effects of antimicrobial residues on microbiological content and the antibiotic resistance in frozen fish. World’s Veterinary Journal. 2022. Vol. 12. № 4. P. 374–381. https://doi.org/10.54203/scil.2022.wvj47.
Ogunwole G.A., Saliu J.K., Osuala F.I., Odunjo F.O. Chronic levels of ibuprofen induces haematoxic and histopathology damage in the gills, liver, and kidney of the African sharptooth catfish (Clarias gariepinus). Environmental Science and Pollution Research International. 2021. Vol. 28. № 20. P. 25603–25613. https://doi.org/10.1007/s11356-020-12286-7.
Roux E. Origine et évolution de l’appareil respiratoire aérien des Vertébrés. Revue Des Maladies Respiratoires. 2002. Vol. 19. № 5. Pt 1. P. 601–615.
Rudenko O.P., Paranjak R.P., Kovalchuk N.A., Kit L.P., Hradovych N.I., Gutyj B.V., Kalyn B.M., Sukhorska O.P., Butsiak A.A., Kropyvka S.I., Petruniv V.V., Kovalska L.M. Influence of seasonal factors on carp fish immune reactivity. Ukrainian Journal of Ecology. 2019. Vol. 9. № 3. P. 168–173.
Scrivani P.V., Percival A. Anatomic study of the canine bronchial tree using silicone casts, radiography, and CT. Veterinary Radiology & Ultrasound: the official journal of the American College of Veterinary Radiology and the International Veterinary Radiology Association. 2023. Vol. 64. № 1. P. 36–41. https://doi.org/10.1111/vru.13141.
Smits A.W., Orgeig S., Daniels C.B. Surfactant composition and function in lungs of air- breathing fishes. The American Journal of Physiology. 1994. Vol. 266 (4 Pt 2). P. R1309–R1313. https://doi.org/10.1152/ajpregu.1994.266.4.R1309.
Juin, S.K., Sarkar, S., Maitra, S., & Nath, P. Effect of fish vitellogenin on the growth of juvenile catfish, Clarias gariepinus (Burchell, 1822). Aquaculture Reports. 2017. Vol. 7. P. 16–26. https://doi.org/10.1016/j.aqrep.2017.05.001.
Tongo I., Erhunmwunse N.O. Effects of ingestion of polyethylene microplastics on survival rate, opercular respiration rate and swimming performance of African catfish (Clarias gariepinus). Journal of Hazardous Materials. 2022. Vol. 423 (Pt B). Р. 127237. https://doi.org/10.1016/j.jhazmat.2021.127237.
Torday J.S., Rehan V.K. Deconvoluting lung evolution using functional/comparative genomics. American Journal of Respiratory Cell and Molecular Biology. 2004. Vol. 31. № 1. P. 8–12. https://doi.org/10.1165/rcmb.2004-0019TR.
Ukagwu J.I., Anyanwu, D.C, Offor, J.I., Nduka, C.O. Comparative studies of nutrient composition of wild caught and pond reared african catfish, Clarias gariepinus. International Journal of Research in Applied, Natural and Social Sciences. 2017. Vol. 5. № 7. P. 63–68.
Vanderelst D., Jonas R., Herbert P. The furrows of Rhinolophidae revisited. Journal of the Royal Society, Interface. 2012. Vol. 9. № 70. P. 1100–1103. https://doi.org/10.1098/rsif.2011.0812.
Zadorozhnii M., Bekh V. First experience of cultivating african catfish (Clarias gariepinus Burchell, 1822) under natural temperature conditions in water bodies of Polissiya of Ukraine. Ribogospodarska Nauka Ukrainy. 2024. Vol. 1. № 67. P. 74–88. https://doi.org/10.61976/fsu2024.01.074.