HEART MORPHOLOGУ OF THE CLARII CATFISH (CLARIAS GARIEPINUS)

Authors

DOI:

https://doi.org/10.32782/naturaljournal.13.2025.4

Keywords:

vertebrate animals, cardiovascular system, heart, ventricle, atrium, arterial cone, morphometry

Abstract

One of the promising fish species that has relatively recently started to be farmed in Ukraine is the African catfish (Clarias gariepinus) from the catfish family. It is a freshwater, warm-water, omnivorous fish that can breathe atmospheric air.The purpose of this study is the morphological evaluation of the macroscopic structure of the heart of the African catfish, a member of the class Actinopterygii, family Clariidae, species Clarias gariepinus.Using morphological, morphometric, and statistical research methods, the results regarding the heart structure of the African catfish are presented, which convincingly show that its morphological structure and morpho-topography in the bony fish, which during their phylogenetic development have evolved to breathe both through gills and lungs, differ from those in bony fishes. It is shown that the heart of the African catfish is topographically located in the cranial part of the body, on the ventral side, near the head in the triangle between the shoulder girdle bones, occupying a central position between the gills. The heart of the African catfish consists of the venous sinus, atrium, ventricle, and arterial cone, which are separated by valves, allowing blood to move only in one direction – from the venous sinus to the arterial cone and not vice versa. As a distinct structure, the atrium is located to the right of the ventricle, with an incomplete septum partially dividing the atrium into right and left halves (chambers). The ventricle of the heart is a hollow organ with an elongated oval shape. The cranial part of the ventricle has an expanded base, while the caudal part has a convex apex. The arterial cone of the heart has an expanded base, which adjoins the ventricle, and its opposite part is narrowed, giving the structure a conical (funnel-like) shape. According to organometry results, the linear dimensions of the heart components vary and depend on their functional load during the rhythmic contractions of the heart muscle in the cardiac rhythm, during which blood flows through the vessels to all organs. The ventricle’s largest linear parameters – length, width, and thickness – are characteristic.In contrast, the linear parameters of the arterial cone and atrium are significantly smaller. Based on the ventricular development index, the heart of the African catfish is classified as narrow-elongated.It has been established that the thickness of the ventricle wall is the largest among all its anatomical structures, measuring 3,2 ± 0,4 mm. It is statistically 1,47 times thinner than the ventricle wall in the arterial cone and the smallest (8,0 times smaller) compared to the ventricle. The absolute and relative masses of the ventricle, arterial cone, and atrium correlate with their linear parameters: the greatest absolute mass is found in the ventricle – 0,52 ± 0,02 g, followed by the arterial cone – 0,21 ± 0,03 g, and the atrium – 0,16 ± 0,03 g.According to these morphometric results, the coefficient of the ratio of the ventricle’s absolute mass to the total heart mass is 1 : 0,58, the ratio of the arterial cone’s absolute mass to the total heart mass is 1 : 0,24, and the ratio of the atrium’s absolute mass to the total mass of the ventricles is 1 : 0,18.The study of the structural characteristics of the cardiovascular organs serves as a foundation for ichthyologists and fish farmers to conduct disease prevention and to mitigate the impact of stress and adverse environmental factors on the fish during aquaculture.

References

Власенко Р.П., Кузьменко Л.П. Зоологія хребетних : навчальний посібник. Житомир : Видавництво Житомирського державного університету імені Івана Франка, 2010. 250 с.

Гнатюк М.С., Слабий О.Б. Морфометрична оцінка особливостей ремоделювання камер легеневого серця з різними типами кровопостачання. Здобутки клінічної і експериментальної медицини. 2016. Т. 25. № 1. https://doi.org/10.11603/1811-2471.2016.v25.i1.5996.

Гнатюк М.С., Слабий О.Б., Татарчук Л.В. Ядерно-цитоплазматичні відносини в кардіоміоцитах та ендотеліоцитах шлуночків легеневого серця. Клінічна анатомія та оперативна хірургія. 2016. Т. 15. № 55. C. 67–70.

Гнатюк М.С., Слабий О.Б., Татарчук Л.В. Просторова характеристика камер серця дослідних тварин з різними типами вегетативної регуляції. Біомедична та біосоціальна антрополо- гія. 2017. № 28. C. 35–39.

Горальський Л.П., Хомич В.Т., Кононский О.І. Основи гістологічної техніки і морфофункціональні методи досліджень у нормі та при патології. Житомир : Полісся, 2019. 288 с.

Горальський Л.П., Рагуля М.Р., Костюк В.К., Сокульський І.М. Визначення об’єму кардіоміоцитів та їх ядерно-цитоплазматичного відношення : науково-методичні рекомендації. Київ : Науково-методичний центр вищої та фахової передвищої освіти, 2024. 32 с.

Задорожній М.В., Бех В.В. Мінімально допустимі температури при вирощуванні африканського кларієвого сома (Clarias gariepinus). Таврійський науковий вісник. 2023. № 135. Ч. 1. C. 232–238.

Мельник О.П., Костюк В.В., Шевченко П.Г. Анатомія риб : підручник. Київ, 2008. 620 с.

Міц І.Р., Денефіль О.В., Андріїшин О.П. Морфологічні зміни внутрішніх органів у тварин різної статі, які зазнали хронічного стресу. Вісник наукових досліджень. 2016. № 3. C. 107–110. https://doi.org/10.11603/2415-8798.2016.3.6994.

Рагуля M.Р., Горальський Л.П., Сокульський I.М., Колесник Н.Л. Особливості морфоархітектоніки та морфометрії серця кроля (oryctolagus cuniculus l. 1758). Аграрний вісник Причорномор’я. 2023. № 108. С. 51–62. https://doi.org/10.37000/abbsl.2023.108.07.

Стахурська І.О., Пришляк А.М. Морфометрична характеристика камер серця тварин різної статі. Вісник проблем біології і медицини. 2014. № 1 (106). С. 269–272.

Шевченко І.В. Морфологічні основи морфогенезу серця в ранньому постнатальному розвитку в нормі. Вісник проблем біології і медицини. 2018. № 3 (145). C. 340–344. https://doi.org/10.29254/2077-4214-2018-3-145-340-344.

Baßmann B., Brenner M., Palm H.W. Stress and welfare of african catfish (Clarias gariepinus Burchell, 1822) in a coupled aquaponic system. Water. 2017. Vol. 9. № 7. P. 504. https://doi.org/10.3390/w9070504.

Belão T.C., Leite C.A., Florindo L.H., Kalinin A.L., Rantin F.T. Cardiorespiratory responses to hypoxia in the African catfish, Clarias gariepinus (Burchell 1822), an air-breathing fish. Journal of Comparative Physiology B. 2011. Vol. 181. № 7. P. 905–916. https://doi.org/10.1007/s00360-011-0577-z.

Ben-Shachar G., Arcilla R.A., Lucas R.V., Manasek, F.J. Ventricular trabeculations in the chick embryo heart and their contribution to ventricular and muscular septal development. Circulation Research. 1985. Vol. 57. № 5. P. 759–766. https://doi.org/10.1161/01.res.57.5.759.

Chan J.H., Kadri S., Köllner B., Rebl A., Korytář T. RNA-Seq of single fish cells - seeking out the leukocytes mediating immunity in teleost fishes. Frontiers in Immunology. 2022. Vol. 13. P. 712–798. https://doi.org/10.3389/fimmu.2022.798712.

Dukhnytskyi V.B., Horalskyi L.P., Sokolyuk V.M., Gutyj B.V., Ishchenko, V.D., Ligomina І.P., Kolesnik N.L., Dzhmil V.I. Morphofunctional changes in the internal organs of laying hens affected by chronic thiamethoxam intoxication. Regulatory Mechanisms in Biosystems. 2024. Vol. 15. № 3. P. 578–586. https://doi.org/10.15421/022481.

Dunaievska O.F., Horalskyi L.P., Sokulskiy I.M., Radzikhovskyi M.L., Gutyj B.V. Influence of protein-vitamin mineral supplements on the splenic morphometric parameters of quails. Regulatory Mechanisms in Biosystems. 2023. Vol. 14. № 2. P. 242–247. https://doi.org/10.15421/022336.

Dzau V.J., Antman E.M., Black H.R., Hayes D.L., Manson J.E., Plutzky J., Popma J.J., Stevenson W. The cardiovascular disease continuum validated: clinical evidence of improved patient outcomes: part I: Pathophysiology and clinical trial evidence (risk factors through stable coronary artery disease). Circulation. 2006. Vol. 114. № 25. P. 2850–2870. https://doi.org/10.1161/ CIRCULATIONAHA.106.655688.

Ghedotti M.J., DeKay H.M., Maile A.J., Smith W.L., Davis M.P. Anatomy and evolution of bioluminescent organs in the slimeheads (Teleostei: Trachichthyidae). Journal of Morphology. 2021. Vol. 282. № 6. P. 820–832. https://doi.org/10.1002/jmor.21349.

Gould R.A., Aboulmouna L.M., Varner J.D., Butcher J.T. Hierarchical approaches for systems modeling in cardiac development. Wiley interdisciplinary reviews. Systems biology and medicine. 2013. Vol. 5. № 3. P. 289–305. https://doi.org/10.1002/wsbm.1217.

Grant K.R. Fish hematology and associated disorders. The veterinary clinics of North America. Exotic animal practice. 2015. Vol. 18. № 1. P. 83–103. https://doi.org/10.1016/j.cvex.2014.09.007.

Hashemi S., Kaveh S., Abedi E., Phimolsiripol Y. Polysaccharide-based edible films/coatings for the preservation of meat and fish products: emphasis on incorporation of lipid-based nanosystems loaded with bioactive compounds. Foods (Basel, Switzerland). 2023. Vol. 12. № 17. P. 32–68. https://doi.org/10.3390/foods12173268.

Hecht T., Oellermann L., Verheust L. Perspectives on clarid culture in Africa. The Biology and Culture of Catfishes. 1996. V. 9. P. 197–206.

Horalskyi L.P., Ragulya М.R., Glukhova N.M., Sokulskiy I.M., Kolesnik N.L., Dunaievska O.F., Gutyj B.V., Goralska I.Y. Morphology and specifics of morphometry of lungs and myocardium of heart ventricles of cattle, sheep and horses. Regulatory Mechanisms in Biosystems. 2022. Vol. 13. № 1. P. 53–59. https://doi.org/10.15421/022207.

Horalskyi L., Ragulya M., Kolesnik N., Sokulskyi I. Peculiarities of organometry and morphoarchitectonics of the heart of the Domestic ram (Ovis aries L., 1758). Ukrainian Journal of Veterinary Sciences. 2023. Vol. 14. № 4. P. 40–56. https://doi.org/10.31548/veterinary4.2023.40.

Horalskyi L.P., Ragulya M.R., Kolesnik N.L., Sokulskyi I.M., Gutyj B.V. Peculiarities of macro- and cytometric assessment of morphological structures of the domestic pig heart. Regulatory Mechanisms in Biosystems. 2024. Vol. 15. № 1. P. 55–61. https://doi.org/10.15421/022408.

Juin S., Sarkar S., Maitra S., Nath P. Effect of fish vitellogenin on the growth of juvenile catfish, Clarias gariepinus (Burchell, 1822). Aquaculture Reports. 2017. Vol. 7. P. 16–26. https://doi.org/10.1016/j.aqrep.2017.05.001.

Lawal B.M., Adewole H.A., Olaleye V.F. Digestibility study and nutrient re-evaluation in clarias gariepinus fed blood meal-rumen digesta blend diet. Notulae Scientia Biologicae. 2017. Vol. 9. № 3. P. 344–349. https://doi.org/10.15835/nsb9310047.

Mahmoud U.M., Mekkawy I.A.A., Naguib M., Sayed A.E.H. Silver nanoparticle-induced nephrotoxicity in Clarias gariepinus: physio-histological biomarkers. Fish Physiology and Biochemistry. 2019. Vol. 45. № 6. P. 1895–1905. https://doi.org/10.1007/s10695-019-00686-7.

Martins B.O., Franco-Belussi L., Siqueira M.S., Fernandes C.E., Provete D.B. The evolution of red blood cell shape in fishes. Journal of Evolutionary Biology. 2021. Vol. 34. № 3. P. 537–548. https://doi.org/10.1111/jeb.13757.

Mbokane E.M., Moyo N.A.G. Use of medicinal plants as feed additives in the diets of Mozambique tilapia (Oreochromis mossambicus) and the African Sharptooth catfish (Clarias gariepinus) in Southern Africa. Frontiers in Veterinary Science. 2022. Vol. 9. P. 1–14. https://doi.org/10.3389/fvets.2022.1072369.

Muller J.F., Marc R.E. Three distinct morphological classes of receptors in fish olfactory organs. The Journal of Comparative Neurology. 1984. Vol. 222. № 4. P. 482–495. https://doi.org/10.1002/cne.902220403.

Olson K.R. Vasculature of the fish gill: anatomical correlates of physiological functions. Journal of Electron Microscopy Technique. 1991. Vol. 19. № 4. P. 389–405. https://doi.org/10.1002/jemt.1060190402.

Roobab U., Fidalgo L.G., Arshad R.N., Khan A.W., Zeng X.A., Bhat Z.F., Bekhit A.E.A., Batool Z., Aadil R.M. High-pressure processing of fish and shellfish products: Safety, quality, and research prospects. Comprehensive Reviews in Food Science and Food Safety. 2022. Vol. 21. № 4. P. 3297–3325. https://doi.org/10.1111/1541-4337.12977.

Song W., Song J. Morphological structure and peripheral innervation of the lateral line system in the Siberian sturgeon (Acipenser baerii). Integrative Zoology. 2012. Vol. 7. № 1. P. 83–93. https://doi.org/10.1111/j.1749-4877.2011.00271.x.

Spaink H.P., Jansen H.J., Dirks R.P. Advances in genomics of bony fish. Briefings in Functional Genomics. 2014. Vol. 13. № 2. P. 144–156. https://doi.org/10.1093/bfgp/elt046.

Strauch S.M., Wenzel L.C., Bischoff A., Dellwig O., Klein J., Schüch A., Wasenitz B., Palm H.W. Commercial African Catfish (Clarias gariepinus) Recirculating Aquaculture Systems: Assessment of Element and Energy Pathways with Special Focus on the Phosphorus Cycle. Sustainability. 2018. Vol. 10. № 6. P. 1805. https://doi.org/10.3390/su10061805.

Svendsen M.S., Johansen J.L., Bushnell P.G., Skov P.V., Norin T., Domenici P., Steffensen J.F., Abe A. Are all bony fishes oxygen regulators? Evidence for oxygen regulation in a putative oxygen conformer, the swamp eel Synbranchus marmoratus. Journal of Fish Biology. 2019. Vol. 94. № 1. P. 178–182. https://doi.org/10.1111/jfb.13861.

Truter M., Hadfield K., Smit N. Review of the metazoan parasites of the economically and ecologically important African sharptooth catfish Clarias gariepinus in Africa: Current status and novel records. Advances in Parasitology. 2023. Vol. 119. P. 65–222. https://doi.org/10.1016/ bs.apar.2022.11.001.

Ukagwu J.I., Anyanwu D.C., Offor J.I., Nduka C.O. Comparative studies of nutrient composition of wild caught and pond reared african catfish, Clarias gariepinus. International Journal of Research in Applied, Natural and Social Sciences. 2017. Vol. 5. № 7. P. 63–68.

Victor S., Nayak V.M., Rajasingh R. Evolution of the ventricles. Texas Heart Institute Journal. 1999. Vol. 26. № 3. P. 168–176.

Weyl O.L. Daga V.S., Ellender B.R., Vitule J.R. A review of Clarias gariepinus invasions in Brazil and South Africa. Journal of Fish Biology. 2016. Vol. 89. № 1. P. 386–402. https://doi.org/10.1111/jfb.12958.

Yu D., Wu L., Regenstein J.M., Jiang Q., Yang F., Xu Y., Xia W. Recent advances in quality retention of non-frozen fish and fishery products : A review. Critical Reviews in Food Science and Nutrition. 2020. Vol. 60. № 10. P. 1747–1759. https://doi.org/10.1080/10408398.2019.1596067.

Zadorozhnii M., Bekh V. First experience of cultivating african catfish (Clarias gariepinus Burchell, 1822) under natural temperature conditions in water bodies of Polissiya of Ukraine. Ribogospodars’ka Nauka Ukraini. 2024. Vol. 1. № 67. P. 74–88. https://doi.org/10.61976/fsu2024.01.074.

Published

2025-10-17