ADSORPTION OF INDIGO CARMINE FROM SOLUTION BY NANOSCALE TITANIUM DIOXIDE
DOI:
https://doi.org/10.32782/naturaljournal.13.2025.20Keywords:
adsorption, kinetic models, adsorption isotherms, indigo carmine, titanium dioxideAbstract
In this paper, we looked at the physical and chemical properties of titanium dioxide as an adsorbent for indigo carmine dye from water solutions. The starting sample was characterised using SEM and XRD spectroscopy.It was found that the size of titanium dioxide particles is less than 150 nm, the particles are prone to aggregate formation, and the average particle size of the adsorbent according to X-ray diffraction data is 44,20 nm. It was shown that during the first 5 minutes from the start of the adsorbate-adsorbent contact, the adsorption capacity is 0,3 mg/g, and the maximum value of 1,25 mg/g is reached within 90 minutes. The nature of the kinetic curve indicates that adsorption equilibrium occurs within the first 30–40 minutes from the start of contact between the dye molecules and the adsorbent. A further increase in the contact time of the solution with the adsorbent does not contribute to an increase in the adsorption value. It has been established that the probable mechanism of adsorption is intermolecular interaction at the adsorbate-adsorbent interface due to Van der Waals forces and hydrogen bonds between indigo carmine molecules and titanium dioxide surface groups. This mechanism of interaction at the interface is a direct consequence of the pseudo-second-order kinetic model with an initial adsorption rate of 0,082 mg/g·min. It has been shown that the adsorption capacity of the titanium dioxide surface is 1,25 mg/g. The nature of the curve resembles the Langmuir isotherm (type L5), which has a maximum according to the Hils classification.This type of isotherm indicates monomolecular adsorption at the phase boundary, where dye molecules undergo association processes in solution. It has been determined that the adsorption isotherm of indigo carmine is satisfactorily described by the Langmuir model, compared to other models, as can be seen from the correlation coefficient (R2 = 0,623), i.e., the adsorption of dye molecules occurs at homogeneous (uniform) centres of the titanium dioxide surface, where all active centres are energetically homogeneous and only a monomolecular layer of adsorbate can form on the surface. The calculated adsorption energy according to the Dubinin – Radushkevich equation for the adsorbent surface does not exceed 2 kJ/mol, which indicates the physical adsorption of indigo carmine molecules on the surface of titanium dioxide, and the calculation of the Gibbs free energy of the adsorption process allows us to conclude that adsorption at this temperature is a non-spontaneous, non-equilibrium process.
References
Камінський О.М., Денисюк Р.О., Чайка М.В., Писаренко С.В., Панасюк Д.Ю., Авдєєв С.В., Євдоченко О.С. Сорбційне вилучення іонних форм Купруму(ІІ) з водних розчинів магніточутливим нанокомпозитом з гідроксиапатитною поверхнею. Український журнал природничих наук. 2024. № 10. С. 75–84. https://doi.org/10.32782/naturaljournal.10.2024.6.
Писаренко С.В., Камінський О.М., Денисюк Р.О., Євдоченко О.С., Анічкіна О.В., Авдєєв С.В. Дослідження процесу адсорбції метиленового синього поверхнею калій титанату. Український журнал природничих наук. 2024. № 9. С. 123–132. https://doi.org/10.32782/ naturaljournal.9.2024.12.
Adam F.A., Ghoniem M.G., Diawara M. et al. Enhanced adsorptive removal of indigo carmine dye by bismuth oxide doped MgO based adsorbents from aqueous solution: equilibrium, kinetic and computational studies. RSC Advances. 2022. Vol. 12. Is. 38. P. 24786–24803. https://doi.org/10.1039/D2RA02636H.
Aissa M.A.B., Khairy M., Khalifa M.E. et al. Facile synthesis of TiO2@ZnO nanoparticles for enhanced removal of methyl orange and indigo carmine dyes: Adsorption, kinetics. Heliyon. 2024. Vol. 10. Is. 10. P. e31351. https://doi.org/10.1016/j.heliyon.2024.e31351.
Dalmaz A., Sivrikaya Ö.S. Methylene blue dye efficient removal using activated carbon developed from waste cigarette butts: Adsorption, thermodynamic and kinetics. Fuel. 2024. Vol. 372. P. 132151. https://doi.org/10.1016/j.fuel.2024.132151.
Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption [Електронний ресурс]. URL: https://www.legislation.gov.uk/eudr/2020/2184 (дата звернення 05.07.2025).
Dutta S., Adhikary S., Bhattacharya S. et al. Contamination of textile dyes in aquatic environment: Adverse impacts on aquatic ecosystem and human health, and its management using bioremediation. Journal of Environmental Management. 2024. Vol. 353. P. 120103. https://doi.org/10.1016/j.jenvman.2024.120103.
Giles C.H., MacEwan T.H., Nakhwa S.N., Smith D. Studies in Adsorption: Part XI. A System of Classification of Solution Adsorption Isotherms and Its Use in Diagnosis of Adsorption Mechanisms and in Measurement of Specific Surface Area Solids. Journal of the Chemical Society. 1960. Vol. 14. P. 3973–3993. https://doi.org/10.1039/jr9600003973.
Keshavarzi F., Samaei M.R., Hashemi H., Azhdarpoor A., Mohammadpour A. Application of montmorillonite/octadecylamine nanoparticles in the removal of textile dye from aqueous solutions: Modeling, kinetic, and equilibrium studies. Heliyon. 2024. P. e25919. https://doi.org/10.1016/j.heliyon.2024.e25919.
Kordbacheh F., Heidari G. Water Pollutants and Approaches for Their Removal. Materials Chemistry Horizons. 2023. Vol. 2 (2). Р. 139–153. https://doi.org/10.22128/mch.2023.684.1039.
Khnifira M., El Hamidi S., Mahsoune A., Sadiq M., Serdaroğlu G., Kaya S., Qourzal S., Barka N., Abdennouri M. Adsorption of methylene blue cationic dye onto brookite and rutile phases of titanium dioxide: Quantum chemical and molecular dynamic simulation studies. Inorganic Chemistry Communications. 2021. Vol. 129. P. 108659. https://doi.org/10.1016/j.inoche.2021.108659.
Kusuma H.S., Christa Jaya D.E., Illiyanasafa N., Ikawati K.L., Kurniasari E., Darmokoesoemo H., Amenaghawon A.N. A critical review and bibliometric analysis of methylene blue adsorption using leaves. Chemosphere. 2024. P. 141867. https://doi.org/10.1016/j.chemosphere.2024.141867.
Li J., Cao Y., Ding K., Ye J., Li F., Ma C., Lv P., Xu Y., Shi L. Research progress of industrial wastewater treatment technology based on solar interfacial adsorption coupled evaporation process. Sci. Total Environ. 2024. P. 172887. https://doi.org/10.1016/j.scitotenv.2024.172887.
Lima J.P., Alvarenga G., Goszczynski A.C., Rosa G.R., Lopes T.J. Batch adsorption of methylene blue dye using Enterolobium contortisiliquum as bioadsorbent: Experimental, mathematical modeling and simulation. J. Ind. Eng. Chem. 2020. Vol. 91. P. 362–371. https://doi.org/10.1016/j.jiec.2020.08.029.
Lyu R., Zhang C., Xia T., Chen S., Wang Z., Luo X., Wang L., Wang Y., Yu J., Wang C. Efficient adsorption of methylene blue by mesoporous silica prepared using sol-gel method employing hydroxyethyl cellulose as a template. Colloids Surf. A: Physicochem. Eng. Asp. 2020. Vol. 606. P. 125425. https://doi.org/10.1016/j.colsurfa.2020.125425.
Pysarenko S., Kaminskyi O., Chyhyrynets O., Denysiuk R., Chernenko V. Photocatalytic destruction and adsorptive processes of methylene blue by potassium titanate. Mater. Today Proc. 2022. Vol. 62 (15). P. 7754–7758. https://doi.org/10.1016/j.matpr.2022.05.476.
Sangor F.I.M.S., Al-Ghouti M.A. Waste-to-value: Synthesis of nano-aluminum oxide (nano-γ- Al2O3) from waste aluminum foils for efficient adsorption of methylene blue dye. Case Stud. Chem. Environ. Eng. 2023. Vol. 8. P. 100394. https://doi.org/10.1016/j.cscee.2023.100394.
Shehata M.M., Waly S.A., Abdelaziz Y.A. Effect of Gd3+ doping on structural and optical properties of MgO-MgAl2O4 nanocomposites synthesized via co-precipitation method. J Mater Sci: Mater Electron. 2021. Vol. 32. Р. 7423–7430. https://doi.org/10.1007/s10854-021-05455-y.
Shi D., Huang Y., Wang H., Yuan W., Fu P. Deoiling of oil-coated catalyst using high-speed suspending self-rotation in cyclone. Sep. Purif. Technol. 2019. Vol. 210. P. 117–124. https://doi.org/10.1016/j.seppur.2018.03.059.
Tichapondwa S.M., Newman J.P., Kubheka O. Effect of TiO2 phase on the photocatalytic degradation of methylene blue dye. Phys. Chem. Earth. 2020. Vol. 118–119. P. 102900. https://doi.org/10.1016/j.pce.2020.102900.
Wang L., Song S., Jiang S., Wang L. Adsorption process optimization for phenolic wastewater treatment with macroporous resin. Desalin. Water Treat. 2019. Vol. 143. P. 192–196. https://doi.org/10.5004/dwt.2019.23275.
Zou P., Zhang M., Li C., Guo Y., Zhu W., Cheng J., Zhu J. Experimental study on dynamic adsorption properties of methylene blue onto coal-based activated carbon using a hydrocyclone. Chem. Eng. Process.: Process Intensif. 2024. Vol. 203. P. 109920. https://doi.org/10.1016/j.cep.2024.109920.
Zhang S. Current status and development trend of China’s dyestuff industry. CIESC Journal. 2019. Vol. 70 (10). P. 3704–3711.






