BIOLOGICAL METHODS FOR DISEASE CONTROL OF CUCUMBER (CUCUMIS SATIVUS L.) IN PROTECTED CULTIVATION: CURRENT STATE AND PROSPECTS

Authors

DOI:

https://doi.org/10.32782/naturaljournal.13.2025.27

Keywords:

pathogens, oomycetes, antagonistic microorganisms, arbuscular mycorrhizal fungi, resistance, environmental safety

Abstract

Cucumber diseases under greenhouse conditions remain a serious threat to production, while conventional chemical protection methods are associated with significant environmental and economic risks, necessitating the search for alternative solutions. The purpose of this review is to systematize current knowledge on biological methods for cucumber disease control in protected cultivation. It has been established that the main causative agents are fungal pathogens (Fusarium spp., Rhizoctonia solani, Pythium spp.) and oomycetes (Pseudoperonospora cubensis), which cause root rots, wilting, and foliar diseases, with potential yield losses of up to 70%. Modern biological protection of cucumbers in protected cultivation is based on the use of antagonistic microorganisms (fungi and bacteria), arbuscular mycorrhizal fungi, and commercial preparations based on them. Biological control involving Trichoderma spp., Bacillus spp., and Pseudomonas spp. ensures high effectiveness through a combination of antagonism, mycoparasitism, and stimulation of plant systemic resistance. Additionally, arbuscular mycorrhizal fungi enhance cucumber resistance to soil-borne pathogens, improving mineral nutrition and the general physiological state of plants. It is concluded that biological methods are environmentally safe, do not lead to toxic residue accumulation in products, do not contribute to pathogen resistance development, and can be used over extended periods. The highest effectiveness is achieved through integrated protection systems that combine biological agents with agronomic practices, the use of resistant cultivars, and optimization of growing conditions. At the same time, biological agents require preventive application and consideration of environmental factors. The prospects for developing biological protection involve creating new highly effective strains, locally adapted formulations, and the integration of biotechnological and genetic approaches. The expediency of implementing biological methods as an effective alternative to chemical agents has been substantiated, aligning with the principles of environmental safety and sustainable agricultural development. Recommendations are provided for improving the effectiveness of biological products in cucumber protection systems in protected cultivation.

References

Пелих В.Ю., Поспєлова Г.Д., Нечипоренко Н.І., Коваленко Н.П. Біопрепарати в технологіях захисту огірка від кореневих гнилей у закритому ґрунті. Грааль науки. 2023. № 25. С. 155–159. https://doi.org/10.36074/grail-of-science.17.03.2023.

Чайка Т.О. Мікориза – ефективні біотехнології в рослинництві. Проблеми та досягнення сучасної біотехнології : V Міжнародна науково-практична конференція, 28 березня 2025 р. Харків : НФаУ, 2025. С. 395–396.

Abdelfatah A., Mazrou Y.S.A., Arafa R.A., Makhlouf A.H., El-Nagar A. Control of cucumber downy mildew disease under greenhouse conditions using biocide and organic compounds via induction of the antioxidant defense machinery. Scientific Reports. 2025. Vol. 15. P. 11705. https://doi.org/10.1038/s41598-024-81643-0.

Ahammed G.J., Mao Q., Yan Ya., Wu M., Wang Ya., Ren J., Guo P., Liu A., Chen S. Role of melatonin in arbuscular mycorrhizal fungi-induced resistance to Fusarium wilt in cucumber. Phytopathology. 2020. Vol. 110 (5). P. 999–1009. https://doi.org/10.1094/PHYTO-11-19-0435-R.

Akhter A., Hage-Ahmed K., Soja G., Steinkellner S. Potential of Fusarium wilt-inducing chlamydospores, in vitro behaviour in root exudates and physiology of tomato in biochar and compost amended soil. Plant Soil. 2016. Vol. 406. P. 425–440. https://doi.org/10.1007/s11104-016-2948-4.

Al-Aswad R.M.A., Al-Azzawi Q.K.Z. Control of downy mildew disease on cucumber caused by the fungus psuedoperonospora cubensis by using environmentally friendly materials. Euphrates Journal of Agriculture Science. 2021. Vol. 13. P. 98–110.

Aljawasim B.D., Khaeim H.M., Manshood M.A. Assessment of arbuscular mycorrhizal fungi (Glomus spp.) as potential biocontrol agents against damping-off disease Rhizoctonia solani on cucumber. Journal of Crop Protection. 2020. Vol. 9 (1). P. 141–147.

Arenas O.R., Olguín J.F.L., Ramón D.J., Sangerman-Jarquín D.M.D., Lezama C.P., Morales P.S., Lara M.H. Biological control of Fusarium oxysporum in tomato seedling production with Mexican strains of Trichoderma. IntechOpen. 2018. https://doi.org/10.5772/intechopen.72878.

Asad S.A., Ali N., Hameed A., Khan S.A., Ahmad R., Bilal M., Shahzad M., Tabassum A. Biocontrol efficacy of different isolates of Trichoderma against soil borne pathogen Rhizoctonia solani. Polish Journal of Microbiology. 2014. Vol. 63 (1). P. 95–103. https://doi.org/10.33073/pjm-2014-014.

Aseel D.G., Rashad Y.M., Hammad S. M. Arbuscular mycorrhizal fungi trigger transcriptional expression of flavonoid and chlorogenic acid biosynthetic pathways genes in tomato against tomato mosaic virus. Scientific Reports. 2019. Vol. 9. P. 9692. https://doi.org/10.1038/s41598-019-46281-x.

Chang C.L., Fu X.P., Zhou X.G., Guo M.Y., Wu F.Z. Effects of seven different companion plants on cucumber productivity, soil chemical characteristics and Pseudomonas community. Journal of Integrative Agriculture. 2017. Vol. 16 (10). P. 2206–2214. https://doi.org/10.1016/S2095-3119(17)61698-8.

Dobrzyński J., Jakubowska Z., Kulkova I., Kowalczyk P., Kramkowski K. Biocontrol of fungal phytopathogens by Bacillus pumilus. Frontiers in Microbiology. 2023. Vol. 14. P. 1194606. https://doi.org/10.3389/fmicb.2023.1194606.

Girma A. In Vitro Biocontrol Evaluation of Some Selected Trichoderma Strains against the Root Pathogen Fusarium oxysporum of Hot Pepper (Capsicum annum L.) in Bure Woreda, Ethiopia. International Journal of Microbiology. 2022. P. 1664116. https://doi.org/10.1155/2022/1664116.

Gordon T.R. Fusarium oxysporum and the Fusarium wilt syndrome. Annual Review of Phytopathology. 2017. Vol. 55. P. 23–39. https://doi.org/10.1146/annurev-phyto-08061.

Hafez Y.M., El-Nagar A.S., Elzaawely A.A., Kamel S., Maswada H.F. Biological control of Podosphaera xanthii the causal agent of squash powdery mildew disease by upregulation of defense-related enzymes. Egyptian Journal of Biological Pest Control. 2018. Vol. 28. P. 57. https://doi.org/10.1186/s41938-018-0058-8.

Harman G.E., Howell C.R., Viterbo A., Chet, I., Lorito M. Trichoderma species – opportunistic, avirulent plant symbionts. Nature Reviews Microbiology. 2004. Vol. 2 (1). P. 43–56. https://doi.org/10.1038/nrmicro797.

Howell C.R., Stipanovic R.D., Lumsden R.D. Antibiotic production by strains of Gliocladium virens and its relation to the biocontrol of cotton seedling diseases. Biocontrol Science and Technology. 2008. Vol. 3 (4). P. 435–441. https://doi.org/10.1080/09583159309355298.

Hyder M., Li Y., Raza M. F., Zhang M., Chen J., Mao J., Bukero A., Zhang L. Enhancing coccinella beetle biological pest control via a floral approach in cucumber greenhouse. Life. 2023. Vol. 13 (10). P. 2080. https://doi.org/10.3390/life13102080.

Kimura Y., Németh M.Z., Numano K., Mitao A., Shirakawa T., Seress D., Takikawa Y., Kakutani K., Matsuda Y., Kiss L., Nonomura T. Hyperparasitic fungi against melon powdery mildew pathogens: quantitative analysis of conidia released from single colonies of Podosphaera xanthii parasitised by Ampelomyces. Agronomy. 2023. Vol. 13 (5). P. 1204. https://doi.org/10.3390/agronomy13051204.

Lebeda A., Cohen Y. Cucurbit downy mildew (Pseudoperonospora cubensis) – Biology, ecology, epidemiology, host-pathogen interaction and control. European Journal of Plant Pathology. 2011. Vol. 129. P. 157–192. https://doi.org/10.1007/s10658-010-9658-1.

Lian H., Li R., Ma G., Zhao Z., Zhang T., Li M. The effect of Trichoderma harzianum agents on physiological-biochemical characteristics of cucumber and the control effect against Fusarium wilt. Scientific Reports. 2023. Vol. 13. P. 17606. https://doi.org/10.1038/s41598-023-44296-z.

McGrath M.T. Fungicide resistance in cucurbit powdery mildew: experiences and challenges. Plant Disease. 2001. Vol. 85 (3). P. 236–245.

Neufeld K.N., Keinath A.P., Ojiambo P.S. A model to predict the risk of infection of cucumber by Pseudoperonospora cubensis. Microbial Risk Analysis. 2017. Vol. 6. P. 21–30. https://doi.org/10.1016/j.mran.2017.05.001.

Núñez-Palenius H.G., Orosco-Alcalá B.E., Espitia-Vázquez I., Olalde-Portugal V., Hoflack-Culebro M., Ramírez-Santoyo L.F., Ruiz-Aguilar G.M.L., Cruz-Huerta N., Valiente-Banuet J.I. Biological control of downy mildew and yield enhancement of cucumber plants by Trichoderma harzianum and Bacillus subtilis (Ehrenberg) under greenhouse conditions. Horticulturae. 2022. Vol. 8 (12). P. 1133. https://doi.org/10.3390/horticulturae8121133.

Osman H.E.M., Nehela Y., Elzaawely A.A., El-Morsy M.H., El-Nagar A. Two bacterial bioagents boost onion response to Stromatinia cepivora and promote growth and yield via enhancing the antioxidant Defense System and Auxin Production. Horticulturae. 2023. Vol. 9 (7). P. 780. https://doi.org/10.3390/horticulturae9070780.

Paulitz T.C., Bélanger R.R. Biological control in greenhouse systems. Annual Review of Phytopathology. 2001. № 39. P. 103–133. https://doi.org/10.1146/annurev.phyto.39.1.103.

Plocek G., Kunz D.R., Simpson C. Impacts of Bacillus amyloliquefaciens and Trichoderma spp. on Pac Choi (Brassica rapa var. chinensis) grown in different hydroponic systems. Frontiers in Plant Science. 2024. Vol. 15. P. 1438038. https://doi.org/10.3389/fpls.2024.1438038.

Prapagdee B., Kuekulvong C., Mongkolsuk S. Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. International Journal of Biology Sciences. 2008. Vol. 4 (5). P. 330–337. https://doi.org/10.7150/ijbs.4.330.

Qi Q., Fan C., Wu H., Sun L., Cao C. Preparation of Trichoderma asperellum microcapsules and biocontrol of cucumber powdery mildew. Microbiology Spectrum. 2023. Vol. 11 (3). P. e05084-22. https://doi.org/10.1128/spectrum.05084-22.

Radišek S., Jakše J., Simončič A., Javornik B. Characterization of Verticillium albo-atrum field isolates using pathogenicity data and AFLP analysis. Plant Disease. 2003. Vol. 87 (6). P. 633–638.

Riseh Saberi R., Hassanisaadi M., Vatankhah M., Soroush F., Varma R.S. Nano/microencapsulation of plant biocontrol agents by chitosan, alginate, and other important biopolymers as a novel strategy for alleviating plant biotic stresses. International Journal of Biological Macromolecules. 2022. Vol. 222 (A). P. 1589–1604. https://doi.org/10.1016/j.ijbiomac.2022.09.278.

Romero D., De Vicente A., Zeriouh H., Cazorla F.M., Fernández-Ortuño D., Torés J.A., Pérez- GarcíaA. Evaluation of biological control agents for managing cucurbit powdery mildew on greenhouse-grown melon. Plant Pathology. 2007. Vol. 56. P. 976–986. https://doi.org/10.1111/ J.1365-3059.2007.01684.X.

Rose S., Parker M., Punja Z.K. Efficacy of biological and chemical treatments for control of fusarium root and stem rot on greenhouse cucumber. Plant Disease. 2003. Vol. 97 (12). P. 1462–1470. https://doi.org/10.1094/PDIS.2003.87.12.1462.

Saad M.M., Eida A.A., Hirt H. Tailoring plant-associated microbial inoculants in agriculture: a roadmap for successful applications. Journal of Experimental Botany. 2020. Vol. 71 (13). P. 3878–3901. https://doi.org/10.1093/jxb/eraa111.

Saberi-Riseh R., Moradi-Pour M., Mohammadinejad R., Thakur V.K. Biopolymers for biological control of plant pathogens: advances in microencapsulation of beneficial microorganisms. Polymers (Basel). 2021. Vol. 13 (12). P. 1938. https://doi.org/10.3390/polym13121938.

Savory E.A., Granke L.L., Quesada-Ocampo L.M., Varbanova M., Hausbeck M.K., Day B. The cucurbit downy mildew pathogen Pseudoperonospora cubensis. Molecular Plant Pathology. 2011. Vol. 12. P. 217–226. https://doi.org/10.1111/j.1364-3703.2010.00670.x.

Schnelle M., Rebek E. IPM in the greenhouse series: integrated pest management in commercial greenhouses: an overview of principles and practices. 2017 [Електронний ресурс]. URL: https://extension.okstate.edu/fact-sheets/ipm-in-the-greenhouse-series-integrated-pest-management-in-commercial-greenhouses-an-overview-of-principles-and-practices.html (дата звернення 11.06.2025).

Shishido K., Murakami H., Kanda D., Fuji S., Toda T., Furuya H. Effect of soil inoculum density and temperature on the incidence of cucumber black root rot. Plant Disease. 2016. Vol. 100. P. 125–130.

Shoukry M.R., Gazar A., EL-Sheshtawi M. Ability of some antagonistic fungi for controlling cucumber downy mildew disease caused by Pseudoperonospora Cubensis. Journal of Plant Protection and Pathology. 2021. Vol. 12. P. 67–69.

Sun Z., Yu S., Hu Y., Wen Y. Biological control of the cucumber downy mildew pathogen pseudoperonospora cubensis. Horticulturae. 2022. Vol. 8 (5). P. 410. https://doi.org/10.3390/horticulturae8050410.

Thomas A., Carbone I., Cohen Y., Ojiambo P.S. Occurrence and distribution of mating types of Pseudoperonospora cubensis in the United States. Phytopathology. 2017. Vol. 107. P. 313–321.

Zerillo M.M., Adhikari B.N., Hamilton J.P., Buell C.R., Lévesque C.A., Tisserat N. Carbohydrate- active enzymes in Pythium and their role in plant cell wall and storage polysaccharide degradation. PLoS One. 2013. Vol. 8 (9). P. e72572. https://doi.org/10.1371/journal.pone.0072572.

Zhang D., Meng K.X., Hao Y.H., Fan H.Y., Cui N., Wang S.S., Song T.F. Comparative proteomic analysis of cucumber roots infected by Fusarium oxysporum f. sp. Cucumerium Owen. Physiological and Molecular Plant Pathology. 2016. Vol. 96. P. 77–84. https://doi.org/10.1016/j.pmpp.2016.09.002.

Zhao H., Zhou T., Xie J., Cheng J., Chen T., Jiang D., Fu Y. Mycoparasitism illuminated by genome and transcriptome sequencing of Coniothyrium minitans, an important biocontrol fungus of the plant pathogen Sclerotinia sclerotiorum. Microbial Genomics. 2020. Vol. 6 (3). P. e000345. https://doi.org/10.1099/mgen.0.000345.

Published

2025-10-17