ELECTROCHEMICAL STUDIES OF THIAMINE BROMIDE REDUCTION PROCESS ON NICKEL ACUTE STRUCTURES MODIFIED WITH NANO-SIZED BISMUTH PARTICLES

Authors

DOI:

https://doi.org/10.32782/naturaljournal.5.2023.9

Keywords:

thiamine bromide, irreversibility of process, nanostructured electrode, electrodeposition

Abstract

The study of the chemical and electrochemical properties of Thiamine (B1) allows for a deeper disclosure of the mechanisms of metabolic processes taking place in living organisms of humans and animals. Samples with a modified and (for comparison) smooth surface of electrochemically precipitated bismuth were used as working electrodes. Nanostructured metal electrodes were made by ion-plasma sputtering of nickel on the surface of a nickel plate, as a result of which arrays of sharp metal structures of the cluster-globule-surface type are formed on it. The straight forward dependence of the reduction potential of thiamine bromide on the logarithm of the sweep velocity indicates the complication of this heterogeneous reaction by adsorption of the depolarizer. The absence of anode current maxima, which are clearly observed in the cathode regions of voltamperograms, indicates the irreversibility of the reduction process of thiamine bromide. The reduction process is irreversible, one-electron, since during the oxidation of thiamine the electron will be removed from the pyrimidine fragment, and during the reduction it will be attached to the thiazole cycle, that is, the oxidative and reducing processes concern different parts of the molecule. According to the calculation of voltammetry curves and the corresponding kinetic equations, the value of the rate constant and the diffusion coefficient of the thiamine bromide reduction process on a nanostructured electrode was calculated. The halflogarithmic activation energy of thiamine bromide electrochemical reduction process is less than the activation energy of chemical processes and may indicate a significant effect of diffusion constraints. The conducted voltammetry studies of the electrochemical process of reduction of thiamine bromide on bismuth-modified electrodes based on the sharp structures of nickel showed that the process of discharge of the depolarizer on these electrodes is 1,67 times more intense on the surface of electrodes with electrodeposited bismuth. Therefore, the electrode materials used have shown high efficiency in the study of the redox properties of B vitamins.

References

Зінчук В.К., Левицька Г.Д., Дубенська Л.О. Фізико-хімічні методи аналізу. Навчальний посібник. Львів : Видавничий центр ЛНУ ім. Івана Франка, 2008. 362 с.

Ковальчук Є.П., Решетняк О.В. Фізична хімія. Львів : Видавничий центр ЛНУ ім. Івана Франка, 2007. 800 с.

Мінаєв Б.П., Аксементьєва О.І., Лут О.А., Шевченко О.П., Погребняк О.С., Електрохімічне окиснення саліцилової кислоти на наноструктурованих електродах на основі нікелю з додатково осадженою платиною. Питання хімії та хімічної технології. 2021. № 2. С. 73–80. Фармацевтична енциклопедія. Київ : Моріон, 2005. 848 с.

Шевченко О.П., Лут О.А., Аксіментьєва О.І. Наноструктуровані металеві поверхні як електродні матеріали при дослідженні електровідновлення органічних кислот. Вісник Черкаського університету. Cерія: Хімічні науки. 2010. Вип. 174. С. 111–116.

Aboul-Kasim E. Anodic adsorptive voltammetric determination of the vitamin B1 (thiamine). J Pharm Biomed Anal., 2000). V. 22(6). 1047–1054. https://doi.org/10.1016/s0731-7085(99)00154-5.

Brahman P.K., Dar R.A., Pitre, K.S. DNA-functionalized electrochemical biosensor for detection of vitamin B1 using electrochemically treated multiwalled carbon nanotube paste electrode by voltammetric methods. Sens. Actuators B Chem, 2013. V. 177. P. 807–812. https://doi.org/10.1016/j.snb.2012.11.073.

Gu H., Yu A., Chen H.. Electrochemical behavior and simultaneous determination of vitamin B2, B6, and C at electrochemically pretreated glassy carbon electrode. Anal Lett, 2001. V. 34. P. 2361–2374. http://dx.doi.org/10.1081/AL-100107301.

Hart J.P. Electroanalysis of biologically important compounds. Ellis Horwood Limited. Hemel Hempstead, UK, 1990. Chapter 4. P. 137–191.

Lương K.V.Q., Nguyễn L.T.H., Role of thiamine in Alzheimer’s disease. Am. J. Alzheimer’s. Dis Other Dement, 2011. V. 26. P. 588–598. https://doi.org/10.1177/1533317511432736.

Lương K.V.Q., Nguyễn L.T.H. The role of thiamine in autism. J Psychiatry Neurosci, 2013. V. 1. P. 22–37. http://dx.doi.org/10.11648/j.ajpn.20130102.11.

Lương, K.V.Q., Nguyễn, L.T.H. The role of thiamine in cancer: Possible genetic and cellular signalling mechanisms. Cancer Genom Proteom, 2013. V. 10. P. 169–185.

Oni, J., Westbroek, P., Nyokong, T. Voltammetric Detection of Vitamin B1 at Carbon Paste Electrodes and Its Determination in Tablets. Electroanalysis, 2002, V. 14(17). P. 1165–1168. https://doi.org/10.1002/1521-4109(200209)14:17%3C1165::aid-elan1165%3E3.0.co;2-s.

Shevchenko O., Lut O., Aksimentyeva O. Нighly sensitive sensor for detection of vitamin B1 on the nanostructural surface of nickel / Sensor Electronics and Microsystem Technologies. 2011. V. 2 (8). P. 69–73.

Tyszczuk-Rotko, K. New voltammetric procedure for determination of thiamine in commercially available juices and pharmaceutical formulation using a lead film electrode. Food Chem, 2012. V. 134. P. 1239–1243. https://doi.org/10.1016/j.foodchem.2012.03.017.

Wan Q., Yang N., Ye Y. Electrochemical behavior of thiamine on a self-assembled gold electrode and its square-wave voltammetric determination in pharmaceutical preparations. Anal Sci, 2002. V. 18. P. 413–416. https://doi.org/10.2116/analsci.18.413.

Published

2023-12-22