OPTIMIZATION OF CULTURE MEDIA FOR INDUSTRIAL CULTIVATION OF THE RECOMBINANT STRAIN ESCHERICHIA COLI BL21

Authors

DOI:

https://doi.org/10.32782/naturaljournal.9.2024.2

Keywords:

Escherichia coli BL21, media optimization, alternative carbon source, alternative nitrogen source, recombinant protein

Abstract

This study presents a comprehensive analysis of scientific literature published between 2019 and 2024, indexed in Web of Science and Scopus databases. The review focuses on identifying optimization strategies for culture media to enhance the industrial cultivation of Escherichia coli BL21 strain for the production of recombinant proteins. This strain is widely used in industry due to its lack of certain proteases, making it ideal for producing stable protein products. The research highlights key factors influencing protein expression and biomass growth, including carbon and nitrogen sources, trace elements, additional components, and pH levels. Altering these key factors can increase cell yield and product quality. The analysis revealed that optimizing the culture medium composition through the use of alternative carbon and nitrogen sources can significantly improve bacterial cell growth and impact the quantity and quality of the recombinant protein. Alcohols such as mannitol and glycerol, sugars like lactose, as well as sugar-containing by-products from the food industry can be used as alternative carbon sources (blackstrap molasses, corn-steep liquor and whey). Additionally, complex compounds like lignocellulose can be utilized. Many alternative carbon sources can also provide nitrogen. The use of alternative carbon and nitrogen sources, on the one hand, can reduce the cost of recombinant protein production and thus affect bioeconomy, but on the other hand, can influence metabolic pathways for the assimilation of other elements and alter the duration of growth phases, which is crucial for industrial microbial cultivation. Optimization of the culture medium has complex consequences, and this process should be considered holistically.

References

Azatian S.B., Kaur N., Latham M.P. Increasing the buffering capacity of minimal media leads to higher protein yield. Journal of biomolecular NMR. 2019. № 73. P. 11–17. https://doi.org/10.1007/s10858-018-00222-4.

Basiony M., Ouyang L., Wang D., Yu J., Zhou L., Zhu M., ... Zhang L. Optimization of microbial cell factories for astaxanthin production: Biosynthesis and regulations, engineering strategies and fermentation optimization strategies. Synthetic and Systems Biotechnology. 2022. № 7 (2). P. 689–704. https://doi.org/10.1016/j.synbio.2022.01.002.

Chiang C.J., Hu M.C., Ta T., Chao Y.P. Glutamate as a non-conventional substrate for high production of the recombinant protein in Escherichia coli. Frontiers in Microbiology. 2022. № 13. 991963. https://doi.org/10.3389/fmicb.2022.991963.

Corless E.I., Mettert E.L., Kiley P.J., Antony E. (2020). Elevated expression of a functional Suf pathway in Escherichia coli BL21 (DE3) enhances recombinant production of an iron-sulfur cluster-containing protein. Journal of Bacteriology. 2020. № 202 (3). p. 10–1128. https://doi.org/10.1128/jb.00496-19.

Deng S., Zhu S., Zhang X., Sun X., Ma X., Su E. High-level expression of nitrile hydratase in Escherichia coli for 2-amino-2, 3-dimethylbutyramide synthesis. Processes. 2022. № 10 (3). p. 544. https://doi.org/10.3390/pr10030544.

Duan M., Wang Y., Yang G., Li J., Wan Y., Deng Y., Mao Y. High-level production of γ-cyclodextrin glycosyltransferase in recombinant Escherichia coli BL21 (DE3): culture medium optimization, enzymatic properties characterization, and product specificity analysis. Annals of Microbiology. 2020. № 70. P. 1–13. https://doi.org/10.1186/s13213-020-01610-8.

Ge J., Wang X., Bai Y., Wang Y., Wang Y., Tu T., ... Zhang J. Engineering Escherichia coli for efficient assembly of heme proteins. Microbial Cell Factories. 2023. № 22 (1). P. 59. https://doi.org/10.1186/s12934-023-02067-5.

Hari Priya S.K., Vijila K. Effect of Different Carbon Sources and Growth Supplements on Growth and Biomass Production of Bioinoculant Azospirillum lipoferum Az204. International Journal of Plant & Soil Science. 2023. № 35 (20). p. 467–473. https://doi.org/10.9734/ijpss/2023/v35i203828.

Höhmann S., Briol T.A., Ihle N., Frick O., Schmid A., Bühler B. Glycolate as alternative carbon source for Escherichia coli. Journal of Biotechnology. 2024. № 381. P. 76–85. https://doi.org/10.1016/j.jbiotec.2024.01.001.

Khani M.H., Bagheri M. Skimmed milk as an alternative for IPTG in induction of recombinant protein expression. Protein expression and purification. 2020. № 170. 105593. https://doi.org/10.1016/j.pep.2020.105593.

Kittler S., Kopp J., Veelenturf P.G., Spadiut O., Delvigne F., Herwig C., Slouka C. The Lazarus Escherichia coli effect: Recovery of productivity on glycerol/lactose mixed feed in continuous biomanufacturing. Frontiers in bioengineering and biotechnology, 2020. № 8. P. 993. https://doi.org/10.3389/fbioe.2020.00993.

Kumar J., Chauhan A.S., Gupta J.A., Rathore A.S. Supplementation of critical amino acids improves glycerol and lactose uptake and enhances recombinant protein production in Escherichia coli. Biotechnology Journal. 2021. № 16 (8). 2100143. https://doi.org/10.1002/biot.202100143.

Leone S., Sannino F., Tutino M.L., Parrilli E., Picone D. Acetate: friend or foe? Efficient production of a sweet protein in Escherichia coli BL21 using acetate as a carbon source. Microbial cell factories. 2015. № 14. p. 1. https://doi.org/10.10.1186/s12934-015-0299-0.

Li Z., Geffers R., Jain G., Klawonn F., Kökpinar Ö., Nimtz M., ... Rinas U. Transcriptional network analysis identifies key elements governing the recombinant protein production provoked reprogramming of carbon and energy metabolism in Escherichia coli BL21 (DE3). Engineering Reports. 2021. № 3 (9). e12393. https://doi.org/10.1002/eng2.12393.

Lozano Terol G., Gallego-Jara J., Sola Martínez R.A., Martínez Vivancos A., Cánovas Díaz M., de Diego Puente T. Impact of the expression system on recombinant protein production in Escherichia coli BL21. Frontiers in microbiology. 2021. № 12. 682001. https://doi.org/10.3389/fmicb.2021.682001.

Motronenko V., Lutsenko T., Galkin A., Gorshunov Y., Solovjova V. Optimization of the culture medium composition to increase the biosynthesis of recombinant human interleukin-7 in Escherichia coli. The Journal of Microbiology, Biotechnology and Food Sciences. 2020. № 9 (4). 761 p. https://doi.org/10.15414/jmbfs.2020.9.4.761-768.

Nagappa L.K., Sato W., Alam F., Chengan K., Smales C.M., Von Der Haar T., ... Moore S.J. A ubiquitous amino acid source for prokaryotic and eukaryotic cell-free transcription-translation systems. Frontiers in Bioengineering and Biotechnology. 2022. № 10. 992708. https://doi.org/10.3389/fbioe.2022.992708.

Rawat J., Bhambri A., Pandey U., Banerjee S., Pillai B., Gadgil M. Amino acid abundance and composition in cell culture medium affects trace metal tolerance and cholesterol synthesis. Biotechnology Progress. 2023. № 39 (1). e3298. https://doi.org/10.1002/btpr.3298.

Sapavatu S.N., Kakkerla A. Media selection, optimization for the expression of diphtheriae toxoid in recombinant E.coli. IJBPAS, June, Special Issue, 2023. № 12 (6). P. 307–317. https://doi.org/10.31032/ijbpas/2023/12.6.1045.

Shukla S., Mishra D. Media Optimization for Production of Recombinant Carrier Protein (CRM 197) in Escherichia coli. Journal of Scientific Research. 2021. № 13 (1). https://doi.org/10.3329/JSR.V13I1.48996.

Shahzadi I., Al-Ghamdi M.A., Nadeem M.S., Sajjad M., Ali A., Khan J.A., Kazmi I. Scale-up fermentation of Escherichia coli for the production of recombinant endoglucanase from Clostridium thermocellum. Scientific reports. 2021. № 11 (1), 7145. https://doi.org/10.1038/s41598-021-86000-z.

Soma Y., Tominaga S., Tokito K., Imado Y., Naka K., Hanai T., ... Bamba T. Trace impurities in sodium phosphate influences the physiological activity of Escherichia coli in M9 minimal medium. Scientific reports. 2023. № 13 (1), 17396. https://doi.org/10.1038/s41598-023-44526-4.

Rezaei L., Shojaosadati S.A., Farahmand L., Moradi‐Kalbolandi S. Enhancement of extracellular bispecific anti-MUC1 nanobody expression in E. coli BL21 (DE3) by optimization of temperature and carbon sources through an autoinduction condition. Engineering in life sciences. 2020. № 20 (8). P. 338–349. https://doi.org/10.1002/elsc.201900158.

Wang Y., Kubiczek D., Horlamus F., Raber H.F., Hennecke T., Einfalt D., ... Rosenau F. Bioconversion of lignocellulosic ‘waste’to high-value food proteins: Recombinant production of bovine and human αS1-casein based on wheat straw lignocellulose. GCB Bioenergy. 2021. № 13 (4). P. 640–655. https://doi.org/10.1111/gcbb.12791.

Yeoh J.W., Jayaraman S.S.O., Tan S.G.D., Jayaraman P., Holowko M.B., Zhang J., ... Poh C.L. A model-driven approach towards rational microbial bioprocess optimization. Biotechnology and Bioengineering. 2021. № 118 (1). p. 305–318. https://doi.org/10.1002/bit.27571.

Zapata Montoya J.E., Carranza Saavedra D., Sánchez Henao C.P. Kinetic analysis and modeling of L-valine production in fermentation batch from E. coli using glucose, lactose and whey as carbon sources. 2021. https://doi.org/10.1016/j.btre.2021.e00642 in English.

Downloads

Published

2024-10-22