BIOGEOCHEMICAL CYCLING OF LEAD IN THE HORNBEAM FOREST ECOSYSTEMS OF THE MIDDLE DNIPRO REGION
DOI:
https://doi.org/10.32782/naturaljournal.10.2024.21Keywords:
forest ecosystems, soil, atmospheric deposition, forest litter, leaf litterfall, phytomass, bioaccumulation by plants, phytotoxicity, microelement biogeochemical cycle, pollutionAbstract
Urban air pollution is a globally recognized issue, significantly impacting human health. Urban green spaces and forest ecosystems play a crucial role in mitigating air pollution; however, they are themselves vulnerable to pollution, leading to phytotoxic effects, reduced resilience of vegetation to other stressors, and diminished air purification efficiency. Heavy metals, particularly lead (Pb), are among the most concerning air pollutants. Unlike other pollutants, heavy metals can be absorbed and accumulated within forest ecosystems, leading to potential long-term ecological consequences. This study aims to evaluate the biogeochemical cycling of Pb in urban green spaces under varying levels of anthropogenic pressure. The research focuses on hornbeam groves in two areas within the Nature Reserve Fund of Ukraine: the Holosiivskyi National Nature Park (NPP) in Kyiv, which experiences significant urban influence, and the Kaniv Nature Reserve, which is relatively undisturbed. Through longterm monitoring, we assessed Pb accumulation in soils, quantified Pb vertical migration using lysimetry, determined the levels of Pb deposition via atmospheric processes, and analyzed Pb dynamics within the forest litter and hornbeam phytomass. Our findings reveal a balanced Pb biogeochemical cycle in the Kaniv Nature Reserve, where Pb inputs from atmospheric deposition and leaf litter are offset by losses due to leaching into deeper soil layers, indicating no significant Pb retention. Conversely, the hornbeam groves in the Holosiivskyi NPP exhibit an imbalanced Pb cycle, with higher Pb retention in the ecosystem, particularly within the phytomass. This imbalance highlights the significant role of the biological component in maintaining the Pb cycle in urban forests, with 21% of Pb in the litter derived from leaf litterfall in the Holosiivskyi NPP.
References
Воробйов Є.О., Любченко В.М., Соломаха В.М., Орлов О.О. Класифікація грабових лісів України. Київ : Фітосоціоцентр, 2008. 252 с.
Єгорова Т.М. Фоновий вміст важких металів та його екологічна інформативність у ґрунтах ландшафтів зони Українського Полісся. Агрохімія та ґрунтознавство. 2014. Т. 81. С. 65–72. [Електронний ресурс]. URL: http://agrosoil.yolasite.com/resources/2014_AIG_81_pp65-72.pdf (дата звернення 26.08.2024).
Клос В.Р., Бірке М., Жовинський Е.Я., Акінфієв Г.О., Амашукелі Ю.А., Кламенс Р. Регіональні геохімічні дослідження ґрунтів України в рамках міжнародного проекту з геохімічного карту вання сільськогосподарських та пасовищних земель Європи (GEMAS). Пошукова та екологічна геохімія. 2012. Т. 1. С. 51–66.
Набиванець Б.І., Сухан В.В., Калабіна Л.В. Аналітична хімія природного середовища. К. : Либідь, 1996. 304 с.
Риженко Н.О. Наукові основи фітотоксикологічної оцінки небезпечності металів (Cd, Pb, Co, Cu, Ni, Zn) у екосистемах: автореф. дис. … докт. біол. наук: 03.00.16. Київ, 2018. 40 с.
Самчук А.І., Кураєва І.В., Гродзинська Г.А., Вовк К.В., Войтюк Ю.Ю., Злобіна К.С., Стадник Т.В., Огар В.О., Небесний В.Б., Гончар Г.Ю. Важкі метали в об’єктах довкілля Київського мегаполісу Київ : Наш формат, 2019. 164 с.
Chen L., Liu C., Zou R., Yang M., Zhang Z. Experimental examination of effectiveness of vegetation as bio-filter of particulate matters in the urban environment. Environmental Pollution. 2016. Vol. 208. Р. 198–208. https://doi.org/10.1016/j.envpol.2015.09.006.
Connan O., Maro D., Hébert D., Roupsard P., Goujon R., Letellier B., Le Cavelier S. Wet and dry deposition of particles associated metals (Cd, Pb, Zn, Ni, Hg) in a rural wetland site, Marais Vernier, France. Atmospheric Environment. 2013. Vol. 67. P. 394–403. https://doi.org/10.1016/j.atmosenv.2012.11.029.
Conti M.E., Iacobucci M., Cecchetti G. A statistical approach applied to trace metal data from biomonitoring studies. International Journal of Environment and Pollution. 2005. Vol. 23. P. 29–41. https://doi.org/10.1504/IJEP.2005.006394.
Diener A., Mudu P. How can vegetation protect us from air pollution? A critical review on green spaces’ mitigation abilities for air-borne particles from a public health perspective - with implications for urban planning. Science of The Total Environment. 2021. Vol. 796. 148605. https://doi.org/10.1016/j.scitotenv.2021.148605.
Guidance for comparing background and chemical concentrations in soil for CERCLA sites. EPA 540-R-01-003 OSWER 9285.7-41. Washington: Office of Emergency and Remedial Response. [Електронний ресурс]. URL: https://www.epa.gov/sites/default/files/2015-11/documents/background. pdf (дата звернення 26.08.2024).
Halasz G.E., Árgyelan J. T., Horvath M. K. Phytoremediation of potential toxic tlements by native tree species in mined-spoiled soils in Mátraszentimre, Hungary. Journal of Environmental Science and Management. 2022. Vol. 25. P. 51–62. https://doi.org/10.47125/jesam/2022_2/06.
Hůnová I., Kurfürst P., Schreiberová M., Vlasáková L., Škáchová H. Atmospheric Deposition of Lead and Cadmium in a Central European Country over the Last Three Decades. Atmosphere, 2023. Vol. 14. 19. https://doi.org/10.3390/atmos14010019.
Kaszala R., Bárány-Kevei I., Polyák-Földi K. Heavy metal content of the vegetation on karstic soils. Acta Climatologica et Chorologica. 2003. Vol. 36. P. 57–62. https://doi.org/10.1007/0-387-23079-3_13.
Kim N.D., Fergusson J.E. Seasonal variations in the concentrations of cadmium, copper, lead and zinc in leaves of the horse chestnut (Aesculus hippocastanum L.). Environmental Pollution. 1994. Vol. 86. P. 89–97. https://doi.org/10.1016/0269-7491(94)90010-8.
Laskowski R., Berg B. Dynamics of some mineral nutrients and heavy metals in decomposing forest litter. Scandinavian Journal of Forest Research. 1993. Vol. 8. P. 446–456. https://doi.org/10.1080/02827589309382791.
Laskowski R., Niklińska M., Maryański M. The Dynamics of Chemical Elements in Forest Litter. Ecology. 1995. Vol. 76. P. 1393–1406. https://doi.org/10.2307/1938143.
Lawson N.M., Mason R.P. Concentration of mercury, methylmercury, cadmium, lead, arsenic, and selenium in the rain and stream water of two contrasting watersheds in western Maryland. Water Research. 2001. Vol. 35. Р. 4039–4052. https://doi.org/10.1016/s0043-1354(01)00140-3.
Makowski V., Julich S., Feger K., Breuer L., Julich D. Leaching of dissolved and particulate phosphorus via preferential flow pathways in a forest soil: An approach using zero-tension lysimeters. Journal of Plant Nutrition and Soil Science. 2020. Vol. 183. P. 238–247. https://doi.org/10.1002/jpln.201900216.
Maksimtsev S., Dudarets S., Yukhnovskyi V. Accumulation of heavy metals in soil and litter of roadside plantations in Western Polissia of Ukraine. Folia Forestalia Polonica, Series A. 2021. Vol. 63. P. 232–242. https://doi.org/10.2478/ffp-2021-0024.
Montemagno A., Hissler C., Bense V., Teuling A. J., Ziebel J., Pfister L. Dynamics of rare earth elements and associated major and trace elements during Douglas-fir (Pseudotsuga menziesii) and European beech (Fagus sylvatica L.) litter degradation. Biogeosciences. 2022. Vol. 19. P. 3111–3129. https://doi.org/10.5194/bg-19-3111-2022.
Percy K.E., Ferretti M. Air pollution and forest health: toward new monitoring concepts. Environmental Pollution. 2004. Vol. 130. P. 113–126. https://doi.org/10.1016/j.envpol.2003.10.034.
Piczak K., Leśniewicz A., Zyrnicki W. Metal concentrations in deciduous tree leaves from urban areas in Poland. Environmental Monitoring and Assessment. 2003. Vol. 86. P. 273–287. https://doi.org/10.1023/a:1024076504099.
Scheid S., Gunthardt-Goerg M. S., Schulin R., Nowack B. Accumulation and solubility of metals during leaf litter decomposition in non-polluted and polluted soil. European Journal of Soil Science. 2009. Vol. 60. P. 613–621. https://doi.org/10.1111/j.1365-2389.2009.01153.x.
Schmidt J.P., Henry L. Water and Bromide Recovery in Wick and Pan Lysimeters under Conventional and Zero Tillage. Communications in Soil Science and Plant Analysis. 2008. Vol. 39. P. 108–123. https://doi.org/10.1080/00103620701759053.
Schreck E., Foucault Y., Sarret G., Sobanska S., Cécillon L., Castrec-Rouelle M., Uzu G., Dumat C. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead. Science of the Total Environment. 2012. Vol. 427–428. P. 253–262. https://doi.org/10.1016/j.scitotenv.2012.03.051.
Shahid M., Dumat C., Khalid S., Schreck E., Xiong T., Khan N. N. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. Journal of Hazardous Materials. 2017. Vol. 325. P. 36–58. https://doi.org/10.1016/j.jhazmat.2016.11.063.
Tisserand R., Van der Ent A., Nkrumah P., Didier S., Sumail S., Morel J.-L., Echevarria G. Nickel stocks and fluxes in a tropical agromining ‘metal crop’ farming system in Sabah (Malaysia). Science of The Total Environment. 2024. Vol. 919. P. 170691. https://doi.org/10.1016/j.scitotenv.2024.170691.
Turcios A., Papenbrock J., Tränkner M. Potassium, an important element to improve water use efficiency and growth parameters in quinoa (Chenopodium quinoa) under saline conditions. Journal of Agronomy and Crop Science. 2021. Vol. 207. P. 618–630. https://doi.org/10.1111/jac.12477.
Tyler G., Olsson T. The importance of atmospheric deposition, charge and atomic mass to the dynamics of minor and rare elements in developing, ageing, and wilted leaves of beech (Fagus sylvatica L.). Chemosphere. 2006. Vol. 65. P. 250–260. https://doi.org/10.1016/j.chemosphere.2006.02.051.
Virzo De Santo A., Fierro A., Berg B., Rutiglianoc F. A. De Marco A. Heavy metals and litter decomposition in coniferous forests. Developments in Soil Science. 2002. Vol. 28, P. 63–78. https://doi.org/10.1016/S0166-2481(02)80044-7.