THE IMPACT OF FUNGICIDES ON THE MORTALITY OF THE PREDATORY BUG MACROLOPHUS PYGMAEUS

Authors

DOI:

https://doi.org/10.32782/naturaljournal.14.2025.3

Keywords:

Macrolophus pygmaeus, Trichoderma harzianum, copper sulfate, side effects, fungicide

Abstract

The integrated protection strategy for solanaceous crops in greenhouses involves a combination of measures that include the use of beneficial insects –specifically the predatory bug Macrolophus pygmaeus – for pest control, as well as pesticides for managing plant diseases. This article presents the results of an assessment of four fungicides and their effects on the mortality of Macrolophus pygmaeus adults and nymphs under laboratory conditions. The treatments included copper sulfate, bupirimate, propamocarb combined with aluminium fosetyl, and the biological agent Trichoderma harzianum. The aim of this study was to provide recommendations for the application of fungicides in production and laboratory settings, based on the observed lethal effects on the beneficial predator Macrolophus pygmaeus. According to the experimental results, the safest fungicides for Macrolophus pygmaeus were the following. The biological product based on Trichoderma harzianum showed the lowest mortality rates: on day 7 after treatment, nymph mortality reached 18.4%, while adult mortality was 19.4%. A similar level of safety was observed for the formulation containing propamocarb hydrochloride and aluminium fosetyl, which caused 18.4% mortality in fifth-instar nymphs and 19.8% mortality in adults. These results allow both products to be classified as non-harmful and suitable for use under production conditions in biolaboratories and greenhouses, even when applied by contact. The active ingredient bupirimate caused 19.8% adult mortality and 46.8% mortality in fifth-instar nymphs on day 7 after treatment. This indicates moderate toxicity for younger developmental stages during contact exposure. Therefore, its application should be used with caution in production, or potentially excluded, to reduce the risk of population loss of the beneficial predator Macrolophus pygmaeus. The mineral fungicide copper sulfate demonstrated a pronounced negative effect on Macrolophus pygmaeus. By day 7 after treatment, adult mortality reached 31%, while mortality of fifth-instar nymphs increased to 51.6%, with cumulative lethality continuing to rise over time. This indicates a prolonged toxic effect of the fungicide after application and the absence of degradation of the active substance during exposure. Its use is therefore considered highly toxic to beneficial insects under contact application and shows an insecticidal effect, meaning it must be applied with extreme caution. In summary, the findings classify Trichoderma harzianum and propamocarb + aluminium fosetyl as compatible with Macrolophus pygmaeus, whereas bupirimate and copper sulfate should be used with caution or excluded from biological protection programs.

References

Державна служба статистики України. Рослинництво України. Київ, 2021.

Кабінет Міністрів України. Міністерство захисту довкілля та природних ресурсів України. Державний реєстр пестицидів і агрохімікатів, дозволених до використання в Україні. [Електронний ресурс]. URL: https://mepr.gov.ua/upravlinnya-vidhodamy/derzhavnyj-reyestrpestytsydiv-i-agrohimikativ-dozvolenyh-do-vykorystannya-v-ukrayini/ (дата звернення: 17.07.2025).

Alimbekova A. Efficiency of using Macrolophus nubilus H.S. for protecting tomatoes from major pests in the greenhouse conditions of South Kazakhstan. Agravita. 2021. Vol. 43. № 3. https://doi.org/10.17503/agrivita.v43i3.2857.

Bažok R., Miholić L., Kadoić B. Osjetljivost predatorske stjenice Macrolophus pygmaeus na insekticide. Zbornik sažetaka 66. seminara biljne zaštite. Hrvatsko društvo biljne zaštite. Zagreb, 2024.

Biobest. Side effects database, 2025. [Електронний ресурс]. URL: https://www.biobest.com/side-effects-app (дата звернення: 15.09.2025).

DeLong D.M. Studies of methods and materials for the control of the leafhopper Empoasca fabae as a bean pest. USDA Technical Bulletin. 1940. P. 740.

FRAC – Fungicide Resistance Action Committee. FRAC mode of action poster. 2025. [Електронний ресурс]. URL: https://www.frac.info/media/a5vnynr3/frac-moa-poster-2025.pdf (дата звернення: 10.10.2025).

Haynes K.F. Sublethal effects of neurotoxic insecticides on insect behavior. Annual Review of Entomology. 1988. Vol. 33. P. 149–168. https://doi.org/10.1146/annurev.en.33.010188.001053.

Herrick N.J., Cloyd R.A. Direct and indirect effects of pesticides on the insidious flower bug (Hemiptera: Anthocoridae) under laboratory conditions. Journal of Economic Entomology. 2017. Vol. 110. P. 931–940. https://doi.org/10.1093/jee/tox306.

Lykouressis D., Perdikis D., Tsagarakis. Polyphagous mirids in Greece: host plants and abundance in traps placed in some crops. Bollettino del Laboratorio di Entomologia Agraria “Filippo Silvestri”. 2001. Vol. 56. P. 57–68.

Malekan N., Hatami B., Akhavan A., Ebadi R. Evaluation of entomopathogenic fungi Beauveria bassiana and Lecanicillium muscarium on different nymphal stages of greenhouse whitefly Trialeurodes vaporariorum in greenhouse conditions. Biharean Biologist. 2015. Vol. 9. P. 108–112. https://doi.org/10.1515/bibio-2015-0017.

Martinou A.F., Seraphides N., Stavrinides M.C. Lethal and behavioral effects of pesticides on the insect predator Macrolophus pygmaeus. Chemosphere. 2014. Vol. 96. P. 167–173. https://doi.org/10.1016/j.chemosphere.2013.10.028.

Martinou A.F., Wright D.J. The predation consequence of continuous breeding vs starting a new colony of a polyphagous insect predator. Phytoparasitica. 2019. Vol. 37. № 1. P. 27–33. https://doi.org/10.1080/00779962.1982.9722404.

Mohammadi R., Valizadegan O. Lethal and sublethal effects of matrine (Rui agro®) on the tomato leaf miner, Tuta absoluta and the predatory bug Macrolophus pygmaeus. Journal of Applied Research in Plant Protection. 2025. Vol. 14(2). P. 111–125. https://doi.org/10.22034/ARPP.2025.19084.

Perdikis D.C., Arvaniti K., Paraskevopoulos A., Grigoriou A. Pre-plant release enhanced the earlier establishment of Nesidiocoris tenuis in open field tomato. Entomologia Hellenica. 2015. Vol. 24. P. 11–21. https://doi.org/10.12681/eh.11541.

Pozzebon A., Borgo M., Duso C. The effects of fungicides on non-target mites can be mediated by plant pathogens. Chemosphere. 2010. Vol. 79. P. 8–17. https://doi.org/10.1016/j.chemosphere.2010.01.064.

Sanchez J.A., López-Gallego E., Pérez-Marcos M., Perera Fernández L.G., Ramírez Soria. How safe is it to rely on Macrolophus pygmaeus (Hemiptera: Miridae) as a biocontrol agent in tomato crops. Agroecology. 2018. Vol. 6. https://doi.org/10.3389/fevo.2018.00132.

Sánchez-Bayo F. Indirect Effect of Pesticides on Insects and Other Arthropods. Toxics. 2021. Vol. 9. № 8. Article 177. https://doi.org/10.3390/toxics9080177.

Sterk G., Hassan S. A., Baillod M. Results of the seventh joint pesticide testing programme. IOBC/WPRS Working Group “Pesticides and Beneficial Organisms”. BioControl. 1999. Vol. 44. P. 99–117. https://doi.org/10.1023/A:1009966806383.

Urbaneja A., Montón H., Molla O. Suitability of the tomato borer Tuta absoluta as prey for Macrolophus pygmaeus and Nesidiocoris tenuis. Journal of Applied Entomology. 2009. Vol. 133. № 4. P. 292–296. https://doi.org/10.1111/j.1439-0418.2008.01380.x.

Ziaei Madbouni M.A., Samih M.A., Qureshi J.A., Biondi A., Namvar P. Compatibility of insecticides and fungicides with the zoophytophagous mirid predator Nesidiocoris tenuis. PLoS ONE. 2017. Vol. 12. № 11. https://doi.org/10.1371/journal.pone.0187439.

Published

2025-12-30