SORPTION PROPERTIES OF NANOSIZED FE3O4 TOWARD HUMAN IMMUNOGLOBULIN IG

Authors

DOI:

https://doi.org/10.32782/naturaljournal.14.2025.13

Keywords:

magnetite, immunoglobulin, sorption models, modeling, acid-base properties

Abstract

The sorption characteristics of nanosized magnetite (Fe3O4) towards human normal immunoglobulin (Ig) were studied. The synthesized Fe3O4 samples were characterized by a complex of physicochemical methods: size and morphology were investigated (TEM/SEM-EDX), qualitative analysis was performed (IR-Fourier spectroscopy), X-ray diffraction analysis (XRD), specific surface area (SBET), and zeta potential were determined. The acid-base properties of the surface were potentiometrically investigated in a model physiological medium of 0,9% NaCl solution (pH 6,86), the sorption processes were investigated and the sorption activity of the surface of Fe3O4 nanoparticles towards normal human immunoglobulin (Ig) was established. Thus, the value of the ζ-potential for Fe3O4 particles indicates sufficient dispersion stability in the pH range ~ 2–5, and its loss at pH ~ 7. It was found that neutral centers predominate on the Fe3O4 surface, which are equally characterized by both acidic and basic properties. The kinetic dependences (pseudo-first and pseudo-second order models) and sorption isotherms (Langmuir and Freundlich models) of Ig were analyzed using linear and nonlinear modeling. The obtained parameters indicate the possibility of using the pseudo-first order kinetic model to correctly describe the dependence of sorption on time and the suitability of the Freundlich model for sorption isotherms of Ig on the Fe3O4 surface. The maximum sorption capacity (Amax) is 12 mg·g−1. The Freundlich index indicates the hetergeneity of the geometry of the adsorption centers, their energy non-equivalence and, mainly, the physical nature of the sorption. Due to the high biocompatibility, the obtained magnetite nanoparticles may be potentially suitable for creating adsorption materials and composites for protein substances, in particular immunoglobulins.

References

Кусяк Н.В., Свиридюк К.П., Кичкирук О.Ю., Листван В.В., Горбик П.П. Кислотно-основні властивості поверхні нанорозмірного Fe₃O₄. Український журнал природничих наук. 2025. № 12. С. 138–145. https://doi.org/10.32782/naturaljournal.12.2025.13

Abarca-Cabrera L., Fraga-García P., Berensmeier S. Bio-nano interactions: binding proteins, polysaccharides, lipids and nucleic acids onto magnetic nanoparticles. Biomaterials Research. 2021. Vol. 25. № 1. P. 12. https://doi.org/10.1186/s40824-021-00212-y

Auría-Soro C., Nesma T., Juanes-Velasco P., Landeira-Viñuela A., Fidalgo-Gomez H., Acebes-Fernandez V., Gongora R., Almendral Parra M.J., Manzano-Roman R., Fuentes M. Interactions of nanoparticles and biosystems: microenvironment of nanoparticles and biomolecules in nanomedicine. Nanomaterials (Basel). 2019. Vol. 9. P. 1365–1385. https://doi.org/10.3390/nano9101365

Bayramoglu G., Salih B., Arica M.Y. Catalytic activity of immobilized chymotrypsin on hybrid silica-magnetic biocompatible particles and its application in peptide synthesis. Applied Biochemistry and Biotechnology. 2019. Vol. 190. P. 1224–124. https://doi.org/10.1007/s12010-019-03158-z

Blank-Shim S.A., Schwaminger S.P., Borkowska-Panek M. et al. Binding patterns of homo-peptides on bare magnetic nanoparticles: insights into environmental dependence. Scientific Reports. 2017. Vol. 7. № 1. P. 14047. https://doi.org/10.1038/s41598-017-13928-6

Cao L., Zhao Y., Chu Z., Zhang X., Zhang W. Core-shell magnetic bimetallic MOF material for synergistic enrichment of phosphopeptides. Talanta. 2020. Vol. 206. P. 120165. https://doi.org/10.1016/j.talanta.2019.120165

Islam M.M., Akter L., Pervez A.K.M.K., Nabi M.N., Uddin M.M., Arifin Z. Application of combined SWOT and AHP for strategy development: evidence from pottery industry of Bangladesh. Asian Journal of Management. 2020. Vol. 11. № 1. P. 30–39. https://doi.org/10.18488/journal.1005/2020.10.1/1005.1.81.94

Jofre C.F., Regiart M., Fernández-Baldo M.A., Bertotti M., Raba J., Messina G.A. Electrochemical microfluidic immunosensor based on TES-AuNPs@Fe₃O₄ and CMK-8 for IgG anti-Toxocara canis determination. Analytica Chimica Acta. 2020. Vol. 1096. P. 120–129. https://doi.org/10.1016/j.aca.2019.10.040

Kaveh-Baghbaderani Y., Allgayer R., Schwaminger S.P., Fraga-García P., Berensmeier S. Magnetic separation of antibodies with high binding capacity by site-directed immobilization of Protein A-domains to bare iron oxide nanoparticles. ACS Applied Nano Materials. 2021. Vol. 4. № 5. P. 4956–4963. https://doi.org/10.1021/acsanm.1c00487

Khuyen H.T., Huong T.T., Huong N.T., Ha V.T.T., Van N.D., Nghia V.X., Anh T.K., Minh L.Q. Luminescence properties of a nanotheranostics based on a multifunctional Fe₃O₄/Au/Eu[1-(2-naphthoyl)-3,3,3-trifluoroacetone]₃ nanocomposite. Optical Materials. 2020. Vol. 109. P. 110229. https://doi.org/10.1016/j.optmat.2020.110229

Kosmulski M. Isoelectric points and points of zero charge of metal (hydr)oxides: 50 years after Parks’ review. Advances in Colloid and Interface Science. 2016. Vol. 238. P. 1–61. https://doi.org/10.1016/j.cis.2016.10.005

Kusyak N., Behunova D. M., Yankovych H., Kusyak A., Findoráková L., Melnyk I. Specific aspects of human immunoglobulin interactions with Fe3O4/≡Si(CH2)3NH2 nanocomposite surface. Applied Nanoscience. 2023. Vol. 13. P. 7219–7230. https://doi.org/10.1007/s13204-023-02883-6

Kusyak N., Kusyak A., Petranovska A. et al. Features of adsorption of human Ig on the surface of magnetically sensitive nanocomposites. Applied Nanoscience. 2022. Vol. 12. P. 679–689. https://doi.org/10.1007/s13204-021-01692-z

Kusyak N.V., Kusyak A.P., Svyrydiuk K.P., Petranovska A.L., & Gorbyk P.P. Evaluation of the acid–base surface properties of nanoscale Fe₃O₄ and Fe₃O₄/SiO₂ by potentiometric method. Molecular Crystals and Liquid Crystals. 2021. Vol. 719. P. 140–152. https://doi.org/10.1080/15421406.2021.1878744

Martins P.M., Lima A.C., Ribeiro S., Lanceros-Mendez S., Martins P. Magnetic nanoparticles for biomedical applications: from the soul of the Earth to the deep history of ourselves. ACS Applied Bio Materials. 2021. Vol. 4. № 8. P. 5839–5870. https://doi.org/10.1021/acsabm.1c00440

Peng Y., Chen L., Ye S., Kang Y., Liu J., Zeng S., Yu L. Research and development of drug delivery systems based on drug transporter and nano-formulation. Asian Journal of Pharmaceutical Sciences. 2020. Vol. 15. № 2. P. 220–236. https://doi.org/10.1016/j.ajps.2020.02.004

Peng Z., Liu X., Zhang W., Zeng Z., Liu Z., Zhang C., Liu Y., Shao B., Liang Q., Tang W., Yuan X. Advances in the application, toxicity and degradation of carbon nanomaterials in environment: A review. Environment International. 2020. Vol. 134. P. 105298. https://doi.org/10.1016/j.envint.2019.105298

Shalmani A.A., Sarihi P., Raoufi M. Nanoparticles and biological environment interactions. In: Rahmandoust M., Ayatollahi M. (eds) Nanomaterials for Advanced Biological Applications. Advanced Structured Materials. Springer : Cham, 2019. Vol. 104. P. 1–17. https://doi.org/10.1007/978-3-030-10834-2_1

Tian S., Jiang J., Zang S., Wang K., Yu Y., Li X., Zhang H., Yu A., Zhang Z. Determination of IgG by electron spin resonance spectroscopy using Fe₃O₄ nanoparticles as probe. Microchemical Journal. 2018. Vol. 141. P. 444–450. https://doi.org/10.1016/j.microc.2018.06.001

Vega-Vásquez P., Mosier N.S., Irudayaraj J. Nanoscale drug delivery systems: from medicine to agriculture. Frontiers in Bioengineering and Biotechnology. 2020. Vol. 8. P. 79. https://doi.org/10.3389/fbioe.2020.00079

Published

2025-12-30