PROSPECTS AND RISKS OF USING LUNAR REGOLITH TO FORM ISOLATED ECOSYSTEMS

Authors

DOI:

https://doi.org/10.32782/naturaljournal.14.2025.25

Keywords:

invasive species, self-renewal of vegetation, Moon colonization, astroecoogy

Abstract

The study investigates the potential for cultivating agricultural crops in lunar regolith from the lunar seas. The research utilized the ETL-1 lunar regolith simulant, “Celesta F1” radish seeds, “Gulyaipilsky” garlic cloves, and “Lidiya” peppermint rhizomes. Control experiments were conducted on pure quartz sand and the universal potting soil mix “Eco plus, Peatfield”. The aim of the work is to explore the potential of lunar regolith as an edaphic basis for isolated ecosystems within future lunar bases. In line with this aim, the following objectives were set: to study the potential of using the ETL-1 lunar regolith simulant for crop germination; to model the potential for spontaneous ecosystem transformations with the ETL-1 lunar regolith simulant as the edaphic basis; to predict the dynamics of agroecosystem processes using the ETL-1 lunar regolith simulant as the edaphic basis. The ETL-1 lunar regolith simulant is capable of supporting the germination of seeds and the initial development of seedlings (from bulbs or rhizomes) for a short period. A correlation exists between the nutrient reserves in the seeds or seedlings and their growth performance on the ETL-1 lunar regolith simulant. The low albedo and granulometric structure of the lunar regolith result in water loss while simultaneously promoting its retention within the substrate’s capillary structure. Untreated regolith, without the addition of mineral nutrients to the irrigation system, is suitable for growing short-season crops primarily for young sprouts (microgreens). Furthermore, regolith is susceptible to colonization by microorganisms, including pathogenic bacteria and fungi. There is also a risk of introducing aggressive weed seeds into the regolith system.

References

Бондар С.С., Хом’як І.В. Тератрансформаційні стратегії освоєння незаселених субстратів. Сталий розвиток країни в рамках Європейської інтеграції : тези Всеукраїнської науково-практичної конференції здобувачів вищої освіти і молодих учених. Житомир : ЖДТУ, 2021. С. 16.

Хом’як І.В. Глобальні екологічні проблеми з точки зору астроекології. Екологічні науки. 2021. № 6(39). С. 154–157. https://doi.org/10.32846/2306-9716/2021.eco.6-39.26

Черняєва О.П., Хом’як І.В. Тератрансформаційний потенціал Elymus repens (L.) Gould. Сталий розвиток країни в рамках Європейської інтеграції : тези Всеукраїнської науково-практичної конференції здобувачів вищої освіти і молодих учених. Житомир : ЖДТУ, 2021. С. 18.

Baur P.S., Clark R.S., Walkinshaw C.H., Scholes V. E. Uptake and translocation of elements from Apollo 11 lunar material by lettuce seedlings. Phyton. 1974. Vol. 32. P. 133–142.

Castro V.A., Thrasher A.N., Healy M., Ott C.M., Pierson D.L. Microbial characterization during the early habitation of the International Space Station. Microbial ecology. 2004. Vol. 47. № 2. P. 119–126. https://doi.org/10.1007/s00248-003-1030-y

Duri L.G., Caporale A.G., Rouphael Y., Vingiani S., Palladino M., De Pascale S., Adamo, P. The potential for lunar and martian regolith simulants to sustain plant growth: a multidisciplinary overview. Frontiers in Astronomy and Space Sciences. 2022. Vol. 8. P. 747821. https://doi.org/10.3389/fspas.2021.747821

Ellery A. Supplementing closed ecological life support systems with in-situ resources on the moon. Life. 2021. Vol. 11. № 8. P. 770. https://doi.org/10.3390/life11080770

Fackrell L. E. Humphrey S., Loureiro R., Palmer A.G., Long-Fox J. Overview and recommendations for research on plants and microbes in regolith-based agriculture. npj Sustainable Agriculture. 2024. Vol. 2. № 1. P. 15. https://doi.org/10.1038/s44204-024-00109-7

Ferl R.J., Paul A.L. Lunar Plant Biology : A Review of the Apollo Era. Astrobiology. 2010. Vol. 10. P. 261–274. https://doi.org/10.1089/ast.2009.0416

Gibson E.K. Volatile elements, carbon, nitrogen, sulfur, sodium, potassium and rubidium in the lunar regolith. Phys Chem Earth. 1977. Vol. X. P. 57–62.

Keeter B. Scientists grow plants in lunar soil. Ed. Bill Keeter. NASA (National Aeronautics and Space Administration) 2025 [Електронний ресурс]. URL: https://www.nasa.gov/feature/biological-physical/scientists-grow-plants-in-soil-from-the-moon (дата звернення 15.07.2025).

Khomiak I.V., Onyshchuk I.P., Vasylenko O.M. Theoretical basis of classification of terraforming methods. Екологічні науки. 2024а. № 4(55). С. 234–237. https://doi.org/10.32846/2306-9716/2024.eco.4-55.38

Khomiak I., Onyschuk I., Khomiak O. Analysis of the relevance of astroecological research. Екологічні науки. 2024b. № 2. С. 35–38. https://doi.org/10.32846/2306-9716/2024.eco.2-53.5

Kozyrovska N.O., Lutvynenko T.L., Korniichuk O.S., Kovalchuk M.V., Voznyuk T.M., et al. Growing pioneer plants for a lunar base. Advances in Space Research. 2006. Vol. 37. P. 93–99. https://doi.org/10.1016/j.asr.2005.07.085

Kral T.A., Bekkum C.R., McKay C.P. Growth of methanogens on a mars soil simulant. Origins of Life and Evolution of the Biosphere. 2004. Vol. 34. P. 615–626. https://doi.org/10.1023/B:-ORIG.0000043135.25309.43

Paul A.L., Smith D.P., Gigis P.J., Ferl J.B., Ferl R.L. Plants grown in Apollo lunar regolith present stress-associated transcriptomes that inform prospects for lunar exploration. Communications Biology. 2022. https://doi.org/10.1038/s42003-022-03513-z

Rickman D., McLemore C.A., Fikes J. Characterization summary of JSC-1A bulk lunar mare regolith simulant. 2007 [Електронний ресурс]. URL: http://www.orbitec.com/store/JSC-1A_Bulk_Data_Characterization.pdf; http://www.orbitec.com/store/JSC-1AF_Characterization.pdf (дата звернення 28.08.2025).

Taylor L., Pieters C., Britt D. Evaluations of lunar regolith simulants. Planetary and Space Science. 2016. Vol. 126. P. 1–7. https://doi.org/10.1016/j.pss.2016.03.015.

Wamelink G.W., Frissel J.Y., Krijnen W.H.J., Verwoert M.R. Can Plants Grow on Mars and the Moon: A Growth Experiment on Mars and Moon Soil Simulants. PLOS One. 2014. Vol. 9. № 8. P e103138. https://doi.org/10.1371/journal.pone.0103138

Zaets I., Burlak O., Rogutskyy I., Vasilenkoa A., Mytrokhyn O., et al. Bioaugmentation in growing plants for lunar bases. Advances in Space Research. 2011. Vol. 47. P. 1071–1078. https://doi.org/10.1016/j.asr.2010.05.011

Downloads

Published

2025-12-30