CARRIERS FOR MICROBIOTA IMMOBILIZATION IN WASTEWATER TREATMENT TECHNOLOGIES

Authors

DOI:

https://doi.org/10.32782/naturaljournal.14.2025.33

Keywords:

immobilization, microorganisms, carriers, wastewater

Abstract

This study provides a comprehensive synthesis of available data on the diversity of carriers for microorganism immobilization, the materials and design architectures used in their production, and analyses how these characteristics affect the efficiency of water purification. This work considers the contributions of researchers from both domestic and international contexts in this field. Most carriers used today either have insufficient surface area for microorganism immobilization, are complex to install or operate, or have low biological stability. Synthetic microorganism carriers are gaining increasing recognition and widespread use in biological wastewater treatment technologies. The carrier material for microorganism immobilization must possess certain characteristics: insolubility in water; significant permeability to air, water, enzymes, substrates, and reaction products; high chemical and biological stability; high specific surface area for biomass immobilization; considerable sorption capacity for microorganisms; manufacturability in production and installation; the ability to regulate process parameters by changing the structure of carrier elements; low material consumption and costeffectiveness through the use of secondary materials. It has been found that rough carriers can provide better opportunities for biofilm formation than smooth ones. It is also desirable for the carrier to have a positive surface charge, as the surface charge of bacterial cells is negative. Among known carriers, the domestic capron fiber carrier “VIYA” has a variety of undeniable advantages and has found wide application in the treatment of wastewater from a wide range of industrial enterprises. The introduction of systems for the immobilization of bacterial biota and other hydrobionts into modern water purification biotechnologies makes it possible to significantly improve and increase the rate of wastewater treatment at treatment facilities, as well as to significantly accelerate the self-purification processes of water in small rivers, and positively affect the ecology of aquatic ecosystem hydrobionts.

References

Гвоздяк П.І. Біохімія води. Біотехнологія води : автомонографія. Київ : Видавничий дім «Києво-Могилянська академія», 2019. 228 с.

Жукова В.С. Застосування носіїв іммобілізованих мікроорганізмів для ефективного біологічного очищення стічних вод. Екологічні біотехнології та біоенергетика : матеріали Науково-практичного семінару, присвяченого 120-річчю Київського політехнічного інституту імені Ігоря Сікорського, м. Київ, 14 грудня 2018 р. Київ : КПІ ім. Ігоря Сікорського, 2018. С. 31–34.

Саблій Л.А. Фізико-хімічне та біологічне очищення висококонцентрованих стічних вод : монографія. Рівне : НУВГП, 2013. 291 с.

Цитлішвілі К.О. Екологія іммобілізованого азоттрансформуючого мікробіоценозу в системах очистки стічних вод : дис. … докт. філос. : 101. Харків, 2021. 187 с.

Al-Amshawee S.K., Yunus M.Y., Azoddein A.A. A novel microbial biofilm carrier for wastewater remediation. IOP Conf. Ser.: Mater. Sci. Eng., 2020a. 13 р. http://dx.doi.org/10.1088/1757-899X/736/7/072006

Al-Amshawee S., Mohd Y., Mohd Y., Vo D.-V., Tran N. Biocarriers for biofilm immobilization in wastewater treatments: a review. Environmental Chemistry Letters. 2020b. Vol. 18(6). Р. 1925–1945. https://doi.org/10.1007/s10311-020-01049-y

Andersson S. Characterization of bacterial biofilms for wastewater treatment. Sweden, Stockholm : School of Biotechnology, Royal Institute of Technology, 2009. 71 р.

Armanu E.G., Volf I. Natural carriers for bacterial immobilization used in bioremediation. Buletinul institutului politehnic din iaşi, Secţia Chimie şi Inginerie Chimică. 2022. Vol. 68(72). № 3. Р. 109–122. http://dx.doi.org/10.5281/zenodo.7545779

Burdenyuk I., Masikevych А., Dombrovskyi K., Rylskyi O., Masykevich Y., Deyneka S., Tymchuk I. Sanitary, microbiological condition, and ecological state of surface water quality in the upper Siret River basin (Ukraine). Ecological Engineering & Environmental Technology. 2023. Vol. 24(9). Р. 55–63. https://doi.org/10.12912/27197050/172930

Dzionek A., Wojcieszyńska D., Guzik U. Natural carriers in bioremediation: a review. Electronic Journal of Biotechnology. 2016. Vol. 19(5). Р. 28–36. http://dx.doi.org/10.1016/j.ejbt.2016.07.003

Freitas B. de O., Leite L. de S., Hoffmann M.T., Lamon A.W., Daniel L.A. Application of alternative carriers without protected surface in moving bed biofilm reactor for domestic wastewater treatment. Water Practice and Technology. 2022. Vol. 17(2). Р. 544–554. https://doi.org/10.2166/wpt.2022.003

Hasegawa M., Amino N., Ishihara K. Wastewater treatment carrier, wastewater treatment carrier module, wastewater treatment carrier unit, and wastewater treatment device. Publication Number WO/2017/056232. Publication Date 06.04.2017. International Application № PCT/JP2015/077726. International Filing Date 30.09.2015. IPC C02F 3/06 2006.1, CPC C02F 2201/007 C02F 3/06C02F 3/10 C02F 3/103 C02F 3/20. Y02W 10/10.

He J., Zhang W., Ren X., Xing L., Chen S., Wang C. Preparation of different activated sludge immobilized carriers and their organic wastewater treatment performance by microbial community. Environmental Engineering Science. 2019. Vol. 36. Is. 5. Р. 604–613. https://doi.org/10.1089/ees.2018.0295

Hou L., Hu K., Huang F., Pan Z., Jia X., Liu W., Yao X., Yang Z., Tang P., Li J. Advances in immobilized microbial technology and its application to wastewater treatment: a review. Bioresource Technology. 2024. Vol. 413. Р. 131518. https://doi.org/10.1016/j.biortech.2024.131518

Iurchenko V., Tkachenko S. Implementation of the sludge biotic index for control and optimization of the biological treatment process. Environmental problems. 2024. Vol. 9. № 3. Р. 164–171. https://doi.org/10.23939/ep2024.03.164

Kriklavova L., Lederer T. The use of nanofiber carriers in biofilm reactor for the treatment of industrial wastewaters. Nanocon 2010 : Conference Proceedings, 2nd International Conference, 12–14 October 2010, Olomouc, Česká Republika. 6 p.

Moga I.C., Iordache O.I., Petrescu G., Pricop F., Dumitrescu I. Polyethylene based materials for biofilm carriers used in wastewater treatment. IOP Conference Series : materials science and engineering, 17–18 May 2018, Iasi, Romania. Vol. 374. 6 р. http://dx.doi.org/10.1088/1757-899X/374/1/012080

Ovelheiro B. 3D printed architected materials for improving biofilm carriers for wastewater treatment applications. USA : University of Massachusetts Amherst, 2020. 100 р.

Phan T.A., Pham T.N., Duong T.H., Nguyen H.M. Novel carrier for seafood wastewater treatment using moving bed biofilm reactor system. Environmental Engineering Research. 2023. Vol. 28(5). Р. 220508. https://doi.org/10.4491/eer.2022.508

Rylsky O., Dombrovskiy K., Masikevych Y., Masikevych A., Malovanyy M. Evaluation of water quality of the Siret River by zooperiphyton organisms. Journal of Ecological Engineering. 2023. Vol. 24(6). Р. 294–302. https://doi.org/10.12911/22998993/163166

Sablii L., Zhukova V., Kozar M., Hrynevych A., Jaromin-Gleń K. Comparison biofilm characteristics on different types of carriers for wastewater treatment. Environmental problems. 2025. Vol. 10. № 1. Р. 20–25. https://doi.org/10.23939/ep2025.01.020

Svobodová (Kriklavova) L., Lederer T. A review study of nanofiber technology for wastewater treatment. Nanocon 2011 : Conference Proceedings, 3rd International Conference, 21–23 September 2011, Brno, Czech Republic. 6 р.

Zhang X., You S., Ma L., Chen C., Li C. The application of immobilized microorganism technology in wastewater treatment. MMECEB 2015 : 2nd International conference on machinery, materials engineering, chemical engineering and biotechnology. 2015. Р. 103–106. http://dx.doi.org/10.2991/mmeceb-15.2016.22

Zhao Y., Hussain A., Liu Y., Yang Z., Zhao T., Bamanu B., Su D. Electrospinning micronanofibers immobilized aerobic denitrifying bacteria for efficient nitrogen removal in wastewater. Journal of Environmental Management. 2023. Vol. 343. Р. 118230. https://doi.org/10.1016/j.jenvman.2023.118230

Zheng Q. Selection and optimization of carriers in biological wastewater treatment applications : master’s thesis. Singapore : Nanyang Technological University, 2005. 141 р.

Published

2025-12-30