XANTHOPHYLL CONCENTRATION IN LYMNAEA STAGNALIS CAUSED BY CHROMIUM IONS
DOI:
https://doi.org/10.35433/naturaljournal.3.2023.91-101Keywords:
freshwater shellfish, heavy metal ions, carotenoid pigments, oxidative stress, metabolic adaptationAbstract
Currently the pollution of natural waters by heavy metal ions is a particularly serious problem which results in the disruption of the balance of food chains and the overall ecosystem balance. In this regard the study of the reaction of the biotic components of the hydroecosystem to toxic effects is relevant, and will allow to expand the understanding of the adaptive mechanisms of aquatic organisms and to determine sensitive test objects and test functions for assessing the degree of pollution of natural waters. The influence of chromium ions (Cr3+ and Cr2O72-) in concentrations corresponding to 0.5 and 2 TLV in fish farming water basins was studied based on the concentration of xanthophylls in hemolymph, hepatopancreas, mantle and leg of Lymnaea stagnalis, which is a permanent component of most hydrobiocenoses of Zhytomyr Polissia. The dynamics of the discussed carotenoids at different durations of exposure (2, 7, 14 and 21 days) of the studied shellfish in a toxic environment were observed. It was found that 48-hour exposure of shellfish in solutions of chromium ions (Cr3+ and Cr2O72- ) regardless of their concentration (0.5 and 2 TLV) causes 2.45–3.23 times increase of xanthophylls in all the studied organs and tissues of L. stagnalis (p ≤ 0.001) which indicates the development of an immediate reaction of animals to toxic elements. Further prolongation of exposure to chromium ions (7, 14, and 21 days) resulted in non-linear organ-dependent dynamics of the xanthophyll content which is related to the specificity of the action of ions, the duration of exposure of animals to toxic solutions, and the metabolic features of the studied organs and tissues. It is shown that the content of xanthophylls in the body of L. stagnalis is characterized by tissue-organ specificity. The minimum amounts of the discussed carotenoid were recorded in the hemolymph of animals and the maximum values varied significantly between the studied components depending on the experimental conditions.
References
Дудник С. В., Євтушенко М. Ю. Водна токсикологія: основні теоретичні положення та їхнє практичне застосування : монографія, Київ.: Вид-во Українського фітосоціологічного центру, 2013. 297 с.
Ситник Ю. М., Арсан О. М., Киричук Г. Є., Ляшенко А. В., Вітовецька Т. В. Вміст важких металів в органах та тканинах молюсків деяких водойм міської зони Києва. Наукові записки Тернопільського національного педагогічного університету імені Володимира Гнатюка. 2012. 51. С. 230–236.
Allaberdiyevich S. S. Quantitative Properties of Chemical Elements in the Body of Bivalves. Journal of Stress Physiology & Biochemistry. 2023. 19 (3). P. 72–78.
Aslam S., Yousafzai A. M. Chromium toxicity in fish: A review article. Journal of Entomology and Zoology Studies. 2017. 5 (3). P. 1483–1488.
Casas S., Gonzalez J. L., Andral B., Cossa D. Relation between metal concentration in water and metal content of marine mussels (Mytilus galloprovincialis): impact of physiology. Environ Toxicol Chem. 2008. 27. P.1543–1552. https://doi.org/10.1897/07-418.1.
Chaâbane M., Bejaoui S., Trabelsi W., Telahigue K., Chetoui I., Chalghaf M., Soudani N. The potential toxic effects of hexavalent chromium on oxidative stress biomarkers and fatty acids profile in soft tissues of Venus verrucosa. Ecotoxicology and Environmental Safety. 2020. 196. 110562. https://doi: 10.1016/j.ecoenv.2020.110562.
Gigantone C. B., Sobremisana M. J., Trinidad L. C., Migo V. P. Impact of abandoned mining facility wastes on the aquatic ecosystem of the Mogpog river, Marinduque, Philippines. Journal of Health and Pollution. 2020. 10 (26). 200611.: https://doi.org/10.5696/2156-9614-10.26.200611.
Kyrychuk G. Y., Muzyka L. V. Peculiarities of the distribution of β-carotene in the organism of Lymnaea stagnalis under the influence of the ions of heavy metals.Hydrobiological Journal. 2016. 52 (5). P. 63–72. https://doi: 10.1615/HydrobJ.v52.i5.70.
Mahboob S. Environmental pollution of heavy metals as a cause of oxidative stress in fish: a review. Life Sci. J. 2013. 10. P. 336–347.
Martin H. D., Ruck C., Schmidt M., Sell S., Beutner S., Mayer B., Walsh R. Chemistry of carotenoid oxidation and free radical reactions. Pure and applied chemistry. 1999. 71 (12). P. 2253–2262. https://doi.org/10.1351/pac199971122253.
Mubiana V. K., Vercauteren K., Blust R. The influence of body size, condition index and tidal exposure on the variability in metal bioaccumulation in Mytilus edulis. Environ Poll. 2006. 144. P. 272–279. https://doi::10.1016/j.envpol.2005.12.017.
Olsson P. E, Kling P., Hogstrand C. Mechanisms of heavy metal accumulation and toxicity in fish. In: Metal metabolism in aquatic environments. Boston, MA: Springer US, 1998. P. 321–350.
Tan K., Zhang H., Lim L. S., Ma H., Li S., Zheng H. Roles of carotenoids in invertebrate immunology. Frontiers in Immunology. 2020. 10. 3041. https://doi: 10.3389/fimmu.2019.03041.
Valdés J., Guinez M., Castillo A., Vega S. E. Cu, Pb, and Zn content in sediments and benthic organisms from San Jorge Bay (northern Chile): Accumulation and biotransference in subtidal coastal systems. Ciencias Marinas. 2014. 40 (1). P. 45–58.:https://doi.org/10.7773/cm.v40i1.2318.
Wang K. S., Chiang K. Y., Tsai C. C., Sun C. J., Tsai C. C., Lin K. L. The effects of FeCl3 on the distribution of the heavy metals Cd, Cu, Cr, and Zn in a simulated multimetal incineration system. Environment International. 2001. 26 (4). P. 257–263. https://doi:10.1016/s0160-4120(00)00115-x.
Wang Y., Su H., Gu Y., Song X., Zhao J. Carcinogenicity of chromium and chemoprevention: a brief update. OncoTargets and therapy. 2017. 10. P. 4065–4079. https:// doi: 10.2147/OTT.S139262.
Yanovych D. O., Shvets T. M. Chromium in Hydroecosystems and its Impact on the Aquatic Biota (a Review). Hydrobiological Journal. 2017. 53 (4). P. 69–84. https://doi:10.1615/hydrobj.v53.i4.70.
Young A. J., Lowe G. L. Carotenoids – antioxidant properties. Antioxidants. 2018. 7 (2). 28. https://doi:10.3390/antiox7020028.