ECOTOXICOLOGICAL ASSESSMENT OF SOIL QUALITY IN THE BERESTYNSKYI DISTRICT, KHARKIV REGION
DOI:
https://doi.org/10.32782/naturaljournal.14.2025.31Keywords:
pollution, soils, test object, phytotoxic properties, biotestingAbstract
The study presents the results of a comprehensive assessment of the phytotoxic properties of soils in the Berestynskyi district of the Kharkiv region, conducted in 2025. The main objective was to determine seasonal variations in soil toxicity and to evaluate the influence of anthropogenic and technogenic factors on soil quality. The bioassay method using Zea mays L. as a test organism was applied to assess the actual biological effects of complex soil contamination. The results revealed a distinct seasonal dynamic in soil toxicity. In spring, the mobilization of toxic compounds dominates due to the accumulation of residual agrochemicals and activation of anaerobic processes following snowmelt. During summer, a significant improvement in soil quality occurs, associated with the stabilization of the water regime, active plant growth, and biochemical detoxification of organic pollutants. In autumn, soils undergo a recovery phase: rainfall and increased microbial activity promote the leaching of toxic substances, the formation of a new humus layer, and stabilization of the chemical balance. Most monitoring sites showed a decrease in contamination levels to Class I–II (uncontaminated or slightly contaminated soils). However, elevated toxicity levels persisted in the Krestyshche area, likely due to oil and gas extraction activities and the accumulation of hydrocarbon compounds. The findings indicate that the region’s soils maintain the capacity for self-purification, biological regeneration, and ecological stabilization, particularly during the summer-autumn period. The study confirms the effectiveness of bioassay methods for assessing the actual toxicity of soils and supports the necessity of systematic monitoring to ensure sustainable agricultural land use and minimize the risk of toxic substance accumulation. The practical significance of the research lies in the potential application of bioassay data for environmental regulation, soil quality control, and the planning of reclamation measures in areas affected by technogenic or military impacts. The results can serve as a scientific basis for developing regional soil monitoring programs aimed at enhancing ecological safety and preserving soil fertility in the long term.
References
Кривицька І.А. Діагностика та моніторинг забруднення ґрунтів важкими металами в урбанізованих ландшафтах Приазов’я : дис. … канд. біол. наук : 03.00.18. Харків, 2020. 187 с.
Тригуб В.І., Домусчи С.В. Біотестування як метод дослідження токсичності ґрунтів. Вісник Одеського національного університету. Серія «Географічні та геологічні науки». 2020. Вип. 25(2(37). С. 112–127. https://doi.org/10.18524/2303-9914.2020.2(37).216565.
Alimba C.G., Gandhi D., Sivanesan S., Bhanarkar M.D., Naoghare P.K., Bakare A.A., Krishnamurthi K. Chemical characterization of simulated landfill soil leachates from Nigeria and India and their cytotoxicity and DNA damage inductions on three human cell lines. Chemosphere. 2016. Vol. 164. P. 469–479. https://doi.org/10.1016/j.chemosphere.2016.08.093.
Arellano P., Tansey K., Balzter H., Boyd D.S. Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images. Environ. Pollut. 2015. Vol. 205. P. 225–239. https://doi.org/10.1016/j.envpol.2015.05.041.
Baderna D., Colombo A., Romeo M., Cambria F., Teoldi F., Lodi M., Diomede L., Benfenati E. Soil quality in the Lomellina area using in vitro models and ecotoxicological assays. Environ. Res. 2014. Vol. 133. P. 220–231. https://doi.org/10.1016/j.envres.2014.05.030.
Heise S., Babut M., Casado C. Ecotoxicological testing of sediments and dredged material: an overlooked opportunity? J Soils Sediments. 2020. Vol. 20. P. 4218–4228. https://doi.org/10.1007/s11368-020-02798-7.
Husejnovic M.S., Bergant M., Jankovic S., Zizek S., Smajlovic A., Softic A., Music O., Antonijevic B. Assessment of Pb, Cd and Hg soil contamination and its potential to cause cytotoxic and genotoxic effects in human cell lines (CaCo-2 and HaCaT). Environ. Geochem. Health. 2018. Vol. 40. P. 1557–1572. https://doi.org/10.1007/s10653-018-0071-6.
Li X., Wang M., Jiang R., Zheng L., Chen W. Evaluation of joint toxicity of heavy metals and herbicide mixtures in soils to earthworms (Eisenia fetida). J. Environ. Sci. (China). 2020. Vol. 94. P. 137–146. https://doi.org/10.1016/j.jes.2020.03.055.
Loureiro S., Santos C., Pinto G., Costa A., Monteiro M., Nogueira A.J.A., Soares A.M.V.M. Toxicity assessment of two soils from Jales mine (Portugal) using plants: growth and biochemical parameters. Arch. Environ. Contam. Toxicol. 2006. Vol. 50. P. 182–190. https://doi.org/182-190. 10.1007/s00244-004-0261-3.
Massa N., Cesaro P., Todeschini V., Bona E., Cantamessa S., Berta G. Evaluation of soil toxicity using different biotests on Pisum sativum: a case study. Plant Biosyst. An Int. J. Deal. with all Asp. Plant Biol. 2018. Vol. 152. P. 1191–1198. https://doi.org/10.1080/11263504.2018.1435570.
Musilová J., Harangozo L., Lidiková J., Franková H. Hygienic quality of soil in the Gemer region (Slovakia) and ecological risk assessment. Scientific Reports. 2021. Vol. 11. P. 13639. https://doi.org/10.1038/s41598-021-93587-w.
Okereafor U., Makhatha M., Mekuto L., Uche-Okereafor N., Sebola T., Mavumengwana V. Toxic metal implications on agricultural soils, plants, animals, aquatic life and human health. Int. J. Environ. Res. Publ. Health. 2020. Vol. 17. P. 2204. https://doi.org/10.3390/ijerph17072204.
Pinto M., Costa P.M., Louro H., Costa M.H., Lavinha J., Caeiro S., Silva M.J. Determining oxidative and non-oxidative genotoxic effects driven by estuarine sediment contaminants on a human hepatoma cell line. Sci. Total Environ. 2014. Vol. 478. P. 25–35. https://doi.org/10.1016/j.scitotenv.2014.01.084.
Resende A.P.O., Santos V.S.V., Campos C.F., de Morais C.R., de Campos Júnior E.O., de Oliveira A.M.M., Pereira B.B. Ecotoxicological risk assessment of contaminated soil from a complex of ceramic industries using earthworm Eisenia fetida. J. Toxicol. Environ. Health Part A Curr. Issues. 2018. Vol. 81. P. 1058–1065. https://doi.org/10.1080/15287394.2018.1528572.
Swati А., Ghosh P., Thakur I.S. An integrated approach to study the risk from landfill soil of Delhi: chemical analyses, in vitro assays and human risk assessment. Ecotoxicol. Environ. Saf. 2017. Vol. 143. P. 120–128. https://doi.org/10.1016/j.ecoenv.2017.05.019.
Szopka K., Gruss I., Gruszka D., Karczewska A.., Gediga K, Gałka B., Dradrach A. The Effects of forest litter and water logging on the ecotoxicity of soils strongly enriched in arsenic in a historical mining site. Forests. 2021. Vol. 12. P. 355. https://doi.org/10.3390/f12030355.
Vogel H.J., Eberhardt E., Franko U., Lang B., Ließ M., Weller U., Wiesmeier M., Wollschläger U. Quantitative evaluation of soil functions: potential and state. Front. Environ. Sci. 2019. Vol. 7. P. 164. https://doi.org/10.3389/fenvs.2019.00164.






